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The plot on the front page is an illustration of the Central Limit Theorem (CLT). To
put it shortly, it states that when sampling a population: as the sample size increases,
then the mean of the sample converges to a normal distribution – no matter the distri-
bution of the population. The thumb rule is that the normal distribution can be used
for the sample mean when the sample size n is above 30 observations (n is the number
observations in the sample). The plot is created by simulating 100000 sample means
X̄ = ∑n

i=1 Xi (where Xi is an observation from a distribution) and plotting their his-
togram with the CLT distribution on top (the red linie). The upper is for the normal, the
mid is for the uniform and the lower is for the exponential distribution. We can thus see
that as n increase, then the distribution of the simulated sample means x̄ approaches
the distribution stated by the CLT (it is the normal distribution X̄ ∼ N

(
µ, σ2

n

)
, where

µ is the mean and σ is the standard deviation of the population), see more in Section
3.1.4.



Chapter 1 1

Chapter 1

Introduction, descriptive statistics,
Python and data visualization

This is the first chapter in the eight-chapter DTU Introduction to Statistics book.
It consists of eight chapters:

1. Introduction, descriptive statistics, Python and data visualization

2. Probability and simulation

3. Statistical analysis of one and two sample data

4. Statistics by simulation

5. Simple linear regression

6. Multiple linear regression

7. Analysis of categorical data

8. Analysis of variance (analysis of multi-group data)

In this first chapter the idea of statistics is introduced together with some of the
basic summary statistics and data visualization methods. This book is available
in in two versions: one using the open souce environment R and one using
the open source environment Python. You are currently reading the Python
version, and this is the software used throughout the book for working with
statistics, probability and data analysis. An introduction to Python is included
in this chapter.
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1.1 What is Statistics - a primer

To catch your attention we will start out trying to give an impression of the
importance of statistics in modern science and engineering.

In the well respected New England Journal of medicine a millennium editorial on
the development of medical research in a thousand years was written:

EDITORIAL: Looking Back on the Millennium in Medicine, N Engl J Med, 342:42-
49, January 6, 2000, NEJM200001063420108.

They came up with a list of 11 points summarizing the most important devel-
opments for the health of mankind in a millennium:

• Elucidation of human anatomy and physiology

• Discovery of cells and their substructures

• Elucidation of the chemistry of life

• Application of statistics to medicine

• Development of anaesthesia

• Discovery of the relation of microbes to disease

• Elucidation of inheritance and genetics

• Knowledge of the immune system

• Development of body imaging

• Discovery of antimicrobial agents

• Development of molecular pharmacotherapy

The reason for showing the list here is pretty obvious: one of the points is Ap-
plication of Statistics to Medicine! Considering the other points on the list, and
what the state of medical knowledge was around 1000 years ago, it is obviously
a very impressive list of developments. The reasons for statistics to be on this
list are several and we mention two very important historical landmarks here.
Quoting the paper:

"One of the earliest clinical trials took place in 1747, when James Lind treated 12
scorbutic ship passengers with cider, an elixir of vitriol, vinegar, sea water, oranges
and lemons, or an electuary recommended by the ship’s surgeon. The success of the
citrus-containing treatment eventually led the British Admiralty to mandate the provi-
sion of lime juice to all sailors, thereby eliminating scurvy from the navy." (See also
James_Lind).

http://www.nejm.org/doi/full/10.1056/NEJM200001063420108
http://en.wikipedia.org/wiki/James_Lind
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Still today, clinical trials, including the statistical analysis of the outcomes, are
taking place in massive numbers. The medical industry needs to do this in
order to find out if their new developed drugs are working and to provide doc-
umentation to have them accepted for the World markets. The medical industry
is probably the sector recruiting the highest number of statisticians among all
sectors. Another quote from the paper:

"The origin of modern epidemiology is often traced to 1854, when John Snow demon-
strated the transmission of cholera from contaminated water by analyzing disease rates
among citizens served by the Broad Street Pump in London’s Golden Square. He ar-
rested the further spread of the disease by removing the pump handle from the polluted
well." (See also John_Snow_(physician)).

Still today, epidemiology, both human and veterinarian, maintains to be an ex-
tremely important field of research (and still using a lot of statistics). An im-
portant topic, for instance, is the spread of diseases in populations, e.g. virus
spreads like Ebola and others.

Actually, today more numbers/data than ever are being collected and the amounts
are still increasing exponentially. One example is Internet data, that internet
companies like Google, Facebook, IBM and others are using extensively. A
quote from New York Times, 5. August 2009, from the article titled “For To-
day’s Graduate, Just One Word: Statistics” is:

“I keep saying that the sexy job in the next 10 years will be statisticians," said Hal
Varian, chief economist at Google. ‘and I’m not kidding.’ ”

The article ends with the following quote:

“The key is to let computers do what they are good at, which is trawling these massive
data sets for something that is mathematically odd,” said Daniel Gruhl, an I.B.M. re-
searcher whose recent work includes mining medical data to improve treatment. “And
that makes it easier for humans to do what they are good at - explain those anomalies.”

1.2 Statistics at DTU Compute

At DTU Compute at the Technical University of Denmark statistics is used,
taught and researched mainly within four research sections:

• Statistics and Data Analysis

• Dynamical Systems

• Image Analysis & Computer Graphics

• Cognitive Systems

http://en.wikipedia.org/wiki/John_Snow_(physician)
http://www.compute.dtu.dk/english
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Each of these sections have their own focus area within statistics, modelling
and data analysis. On the master level it is an important option within DTU
Compute studies to specialize in statistics of some kind on the joint master pro-
gramme in Mathematical Modelling and Computation (MMC). And a Statisti-
cian is a well-known profession in industry, research and public sector institu-
tions.

The high relevance of the topic of statistics and data analysis today is also illus-
trated by the extensive list of ongoing research projects involving many and di-
verse industrial partners within these four sections. Neither society nor indus-
try can cope with all the available data without using highly specialized peo-
ple in statistical techniques, nor can they cope and be internationally competi-
tive without continuously further developing these methodologies in research
projects. Statistics is and will continue to be a relevant, viable and dynamic
field. And the amount of experts in the field continues to be small compared
to the demand for experts, hence obtaining skills in statistics is for sure a wise
career choice for an engineer. Still for any engineer not specialising in statistics,
a basic level of statistics understanding and data handling ability is crucial for
the ability to navigate in modern society and business, which will be heavily
influenced by data of many kinds in the future.

1.3 Statistics - why, what, how?

Often in society and media, the word statistics is used simply as the name for
a summary of some numbers, also called data, by means of a summary table
and/or plot. We also embrace this basic notion of statistics, but will call such
basic data summaries descriptive statistics or explorative statistics. The meaning
of statistics goes beyond this and will rather mean “how to learn from data in an
insightful way and how to use data for clever decision making”, in short we call this
inferential statistics. This could be on the national/societal level, and could be re-
lated to any kind of topic, such as, e.g., health, economy or environment, where
data is collected and used for learning and decision making. For example:

• Cancer registries

• Health registries in general

• Nutritional databases

• Climate data

• Macro economic data (Unemployment rates, GNP etc. )

• etc.

http://www.dtu.dk/english/Education/msc/Programmes/mathematical_modelling_and_computation
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The latter is the type of data that historically gave name to the word statistics. It
originates from the Latin ‘statisticum collegium’ (state advisor) and the Italian
word ‘statista’ (statesman/politician). The word was brought to Denmark by
the Gottfried Achenwall from Germany in 1749 and originally described the
processing of data for the state, see also History_of_statistics.

Or it could be for industrial and business applications:

• Is machine A more effective than machine B?

• How many products are we selling on different markets?

• Predicting wind and solar power for optimizing energy systems

• Do we produce at the specified quality level?

• Experiments and surveys for innovative product development

• Drug development at all levels at e.g. Novo Nordisk A/S or other phar-
maceutical companies

• Learning from "Big Data"

• etc.

In general, it can be said that we learn from data by analysing the data with sta-
tistical methods. Therefore statistics will in practice involve mathematical mod-
elling, i.e. using some linear or non-linear function to model the particular phe-
nomenon. Similarly, the use of probability theory as the concept to describe ran-
domness is extremely important and at the heart of being able to “be clever” in
our use of the data. Randomness expresses that the data just as well could have
come up differently due to the inherent random nature of the data collection
and the phenomenon we are investigating.

Probability theory is in its own right an important topic in engineering relevant
applied mathematics. Probability based modelling is used for e.g. queuing sys-
tems (queuing for e.g. servers, websites, call centers etc.), for reliability mod-
elling, and for risk analysis in general. Risk analysis encompasses a vast di-
versity of engineering fields: food safety risk (toxicological and/or allergenic),
environmental risk, civil engineering risks, e.g. risk analysis of large building
constructions, transport risk, etc. The present material focuses on the statistical
issues, and treats probability theory at a minimum level, focusing solely on the
purpose of being able to do proper statistical inference and leaving more elabo-
rate probability theory and modelling to other texts.

There is a conceptual frame for doing statistical inference: in Statistical inference
the observed data is a sample, that is (has been) taken from a population. Based
on the sample, we try to generalize to (infer about) the population. Formal
definitions of what the sample and the population is are given by:

http://en.wikipedia.org/wiki/History_of_statistics
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Definition 1.1 Sample and population

• An observational unit is the single entity about which information is
sought (e.g. a person)

• An observational variable is a property which can be measured on the
observational unit (e.g. the height of a person)

• The statistical population consists of the value of the observational vari-
able for all observational units (e.g. the heights of all people in Den-
mark)

• The sample is a subset of the statistical population, which has been cho-
sen to represent the population (e.g. the heights of 20 persons in Den-
mark).

See also the illustration in Figure 1.1.

Randomly
selected

(Infinite) Statistical population

Sample mean
x̄

Mean
µ

Sample
{x1, x2, . . . , xn}

Statistical
Inference

Figure 1.1: Illustration of statistical population and sample, and statistical in-
ference. Note that the bar on each person indicates that the it is the height (the
observational variable) and not the person (the observational unit), which are
the elements in the statistical population and the sample. Notice, that in all
analysis methods presented in this text the statistical population is assumed to
be very large (or infinite) compared to the sample size.
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This is all a bit abstract at this point. And likely adding to the potential confu-
sion about this is the fact that the words population and sample will have a “less
precise” meaning when used in everyday language. When they are used in a
statistical context the meaning is very specific, as given by the definition above.
Let us consider a simple example:

Example 1.2

The following study is carried out (actual data collection): the height of 20 persons
in Denmark is measured. This will give us 20 values x1, . . . , x20 in cm. The sample
is then simply these 20 values. The statistical population is the height values of all
people in Denmark. The observational unit is a person.

The meaning of sample in statistics is clearly different from how a chemist or
medical doctor would use the word, where a sample would be the actual sub-
stance in e.g. the petri dish. Within this book, when using the word sample, then
it is always in the statistical meaning i.e. a set of values taken from a statistical
population.

With regards to the meaning of population within statistics the difference to the
everyday meaning is less obvious: but note that the statistical population in the
example is defined to be the height values of people, not actually the people.
Had we measured the weights instead the statistical population would be quite
different. Also later we will realize that statistical populations in engineering
contexts can refer to many other things than populations as in a group of or-
ganisms, hence stretching the use of the word beyond the everyday meaning.
From this point: population will be used instead of statistical population in order
to simplify the text.

The population in a given situation will be linked with the actual study and/or
experiment carried out - the data collection procedure sometimes also denoted
the data generating process. For the sample to represent relevant information
about the population it should be representative for that population. In the ex-
ample, had we only measured male heights, the population we can say any-
thing about would be the male height population only, not the entire height
population.

A way to achieve a representative sample is that each observation (i.e. each
value) selected from the population, is randomly and independently selected of
each other, and then the sample is called a random sample.
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1.4 Summary statistics

The descriptive part of studying data maintains to be an important part of statis-
tics. This implies that it is recommended to study the given data, the sample,
by means of descriptive statistics as a first step, even though the purpose of a full
statistical analysis is to eventually perform some of the new inferential tools
taught in this book, that will go beyond the pure descriptive part. The aims of
the initial descriptive part are several, and when moving to more complex data
settings later in the book, it will be even more clear how the initial descriptive
part serves as a way to prepare for and guide yourself in the subsequent more
formal inferential statistical analysis.

The initial part is also called an explorative analysis of the data. We use a number
of summary statistics to summarize and describe a sample consisting of one or
two variables:

• Measures of centrality:

– Mean

– Median

– Quantiles

• Measures of “spread”:

– Variance

– Standard deviation

– Coefficient of variation

– Inter Quartile Range (IQR)

• Measures of relation (between two variables):

– Covariance

– Correlation

One important point to notice is that these statistics can only be calculated for
the sample and not for the population - we simply don’t know all the values
in the population! But we want to learn about the population from the sample.
For example when we have a random sample from a population we say that the
sample mean (x̄) is an estimate of the mean of the population, often then denoted
µ, as illustrated in Figure 1.1.
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Remark 1.3

Notice, that we put ’sample’ in front of the name of the statistic, when it is
calculated for the sample, but we don’t put ’population’ in front when we
refer to it for the population (e.g. we can think of the mean as the true mean).

HOWEVER we don’t put sample in front of the name every time it should
be there! This is to keep the text simpler and since traditionally this is not
strictly done, for example the median is rarely called the sample median,
even though it makes perfect sense to distinguish between the sample me-
dian and the median (i.e. the population median). Further, it should be
clear from the context if the statistic refers to the sample or the population,
when it is not clear then we distinguish in the text. Most of the way we do
distinguish strictly for the mean, standard deviation, variance, covariance and
correlation.

1.4.1 Measures of centrality

The sample mean is a key number that indicates the centre of gravity or cen-
tring of the sample. Given a sample of n observations x1, . . . , xn, it is defined as
follows:

Definition 1.4 Sample mean

The sample mean is the sum of observations divided by the number of ob-
servations

x̄ =
1
n

n

∑
i=1

xi. (1-1)

Sometimes this is refereed to as the average.

The median is also a key number indicating the center of sample (note that to
be strict we should call it ’sample median’, see Remark 1.3 above). In some
cases, for example in the case of extreme values or skewed distributions, the
median can be preferable to the mean. The median is the observation in the
middle of the sample (in sorted order). One may express the ordered observa-
tions as x(1), . . . , x(n), where then x(1) is the smallest of all x1, . . . , xn (also called
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the minimum) and x(n) is the largest of all x1, . . . , xn (also called the maximum).

Definition 1.5 Median

Order the n observations x1, . . . , xn from the smallest to largest:
x(1), . . . , x(n). The median is defined as:

• If n is odd the median is the observation in position n+1
2 :

Q2 = x( n+1
2 ). (1-2)

• If n is even the median is the average of the two observations in posi-
tions n

2 and n+2
2 :

Q2 =
x( n

2 )
+ x( n+2

2 )

2
. (1-3)

The reason why it is denoted with Q2 is explained below in Definition 1.8.

Example 1.6 Student heights

A random sample of the heights (in cm) of 10 students in a statistics class was

168 161 167 179 184 166 198 187 191 179 .

The sample mean height is

x̄ =
1
10

(168 + 161 + 167 + 179 + 184 + 166 + 198 + 187 + 191 + 179) = 178.

To find the sample median we first order the observations from smallest to largest

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)

161 166 167 168 179 179 184 187 191 198
.

Note that having duplicate observations (like e.g. two of 179) is not a problem - they
all just have to appear in the ordered list. Since n = 10 is an even number the median
becomes the average of the 5th and 6th observations

x( n
2 )
+ x( n+2

2 )

2
=

x(5) + x(6)
2

=
179 + 179

2
= 179.
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As an illustration, let’s look at the results if the sample did not include the 198 cm
height, hence for n = 9

x̄ =
1
9
(168 + 161 + 167 + 179 + 184 + 166 + 187 + 191 + 179) = 175.78.

then the median would have been

x( n+1
2 ) = x(5) = 179.

This illustrates the robustness of the median compared to the sample mean: the
sample mean changes a lot more by the inclusion/exclusion of a single “extreme”
measurement. Similarly, it is clear that the median does not depend at all on the
actual values of the most extreme ones.

The median is the point that divides the observations into two halves. It is of
course possible to find other points that divide into other proportions, they are
called quantiles or percentiles (note, that this is actually the sample quantile or
sample percentile, see Remark 1.3).

Definition 1.7 Quantiles and percentiles

The p quantile also called the 100p% quantile or 100p’th percentile, can be
defined by the following procedure: a

1. Order the n observations from smallest to largest: x(1), . . . , x(n)

2. Compute pn

3. If pn is an integer: average the pn’th and (pn + 1)’th ordered observa-
tions. Then the p quantile is

qp =
(

x(np) + x(np+1)

)
/2 (1-4)

4. If pn is a non-integer: take the “next one” in the ordered list. Then the
p’th quantile is

qp = x(dnpe), (1-5)

where dnpe is the ceiling of np, that is, the smallest integer larger than
np

aThere exist several other formal definitions. To obtain this definition of quan-
tiles/percentiles in Python use percentile(..., method=’averaged_inverted_cdf’).
Using the default method is also a perfectly valid approach - just a different one.
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Often calculated percentiles are the so-called quartiles (splitting the sample in
quarters, i.e. 0%, 25%, 50%, 75% and 100%):

• q0, q0.25, q0.50, q0.75 and q1

Note that the 0’th percentile is the minimum (smallest) observation and the
100’th percentile is the maximum (largest) observation. We have specific names
for the three other quartiles:

Definition 1.8 Quartiles

Q1 = q0.25 = “lower quartile” = “0.25 quantile” = “25’th percentile”
Q2 = q0.50 = “median” = “0.50 quantile” = “50’th percentile”
Q3 = q0.75 = “upper quartile” = “0.75 quartile” = “75’th percentile”

Example 1.9 Student heights

Using the n = 10 sample from Example 1.6 and the ordered data table from there,
let us find the lower and upper quartiles (i.e. Q1 and Q3), as we already found
Q2 = 179.

First, the Q1: with p = 0.25, we get that np = 2.5 and we find that

Q1 = x(d2.5e) = x(3) = 167,

and since n · 0.75 = 7.5, the upper quartile becomes

Q3 = x(d7.5e) = x(8) = 187.

We could also find the 0’th percentile

q0 = min(x1, . . . , xn) = x(1) = 161,

and the 100’th percentile

q1 = max(x1, . . . , xn) = x(10) = 198.

Finally, 10’th percentile (i.e. 0.10 quantile) is

q0.10 =
x(1) + x(2)

2
=

161 + 166
2

= 163.5,

since np = 1 for p = 0.10.
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1.4.2 Measures of variability

A crucial aspect to understand when dealing with statistics is the concept of
variability - the obvious fact that not everyone in a population, nor in a sample,
will be exactly the same. If that was the case they would all equal the mean
of the population or sample. But different phenomena will have different de-
grees of variation: An adult (non dwarf) height population will maybe spread
from around 150 cm up to around 210 cm with very few exceptions. A kitchen
scale measurement error population might span from −5 g to +5 g. We need a
way to quantify the degree of variability in a population and in a sample. The
most commonly used measure of sample variability is the sample variance or
its square root, called the sample standard deviation:

Definition 1.10 Sample variance

The sample variance of a sample x1, . . . , xn is the sum of squared differences
from the sample mean divided by n− 1

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2. (1-6)

Definition 1.11 Sample standard deviation

The sample standard deviation is the square root of the sample variance

s =
√

s2 =

√
1

n− 1

n

∑
i=1

(xi − x̄)2. (1-7)

The sample standard deviation and the sample variance are key numbers of
absolute variation. If it is of interest to compare variation between different
samples, it might be a good idea to use a relative measure - most obvious is the
coefficient of variation:
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Definition 1.12 Coefficient of variation

The coefficient of variation is the sample standard deviation seen relative to
the sample mean

V =
s
x̄

. (1-8)

We interpret the standard deviation as the average absolute deviation from the mean
or simply: the average level of differences, and this is by far the most used measure
of spread. Two (relevant) questions are often asked at this point (it is perfectly
fine if you didn’t wonder about them by now and you might skip the answers
and return to them later):

Remark 1.13

Question: Why not actually compute directly what the interpretation is
stating, which would be: 1

n ∑n
i=1 |xi − x̄|?

Answer: This is indeed an alternative, called the mean absolute deviation, that
one could use. The reason for most often measuring “mean deviation”
NOT by the Mean Absolute Deviation statistic, but rather by the sample
standard deviation s, is the so-called theoretical statistical properties of
the sample variance s2. This is a bit early in the material for going into
details about this, but in short: inferential statistics is heavily based
on probability considerations, and it turns out that it is theoretically
much easier to put probabilities related to the sample variance s2 on
explicit mathematical formulas than probabilities related to most other
alternative measures of variability. Further, in many cases this choice
is in fact also the optimal choice in many ways.
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Remark 1.14

Question: Why divide by n − 1 and not n in the formulas of s and s2?
(which also appears to fit better with the stated interpretation)

Answer: The sample variance s2 will most often be used as an estimate of
the (true but unknown) population variance σ2, which is the average
of (xi − µ)2 in the population. In doing that, one should ideally com-
pare each observation xi with the population mean, usually called µ.
However, we do not know µ and instead we use x̄ in the computation
of s2. In doing so, the squared differences (xi− x̄)2 that we compute in
this way will tend to be slightly smaller than those we ideally should
have used: (xi− µ)2 (as the observations themselves were used to find
x̄ so they will be closer to x̄ than to µ). It turns out, that the correct way
to correct for this is by dividing by n− 1 instead of n.

Spread in the sample can also be described and quantified by quartiles:

Definition 1.15 Range

The range of the sample is

Range = Maximum−Minimum = Q4 −Q0 = x(n) − x(1). (1-9)

The Inter Quartile Range (IQR) is the middle 50% range of data defined as

IQR = q0.75 − q0.25 = Q3 −Q1. (1-10)
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Example 1.16 Student heights

Consider again the n = 10 data from Example 1.6. To find the variance let us com-
pute the n = 10 differences to the mean, that is (xi − 178)

-10 -17 -11 1 6 -12 20 9 13 1 .

So, if we square these and add them up we get

10

∑
i=1

(xi − x̄)2 = 102 + 172 + 112 + 12 + 62 + 122 + 202 + 92 + 132 + 12 = 1342.

Therefore the sample variance is

s2 =
1
9

1342 = 149.1,

and the sample standard deviation is

s = 12.21.

We can interpret this as: people are on average around 12 cm away from the mean
height of 178 cm. The Range and Inter Quartile Range (IQR) are easily found from
the ordered data table in Example 1.6 and the earlier found quartiles in Example 1.9

Range = maximum−minimum = 198− 161 = 37,

IQR = Q3 −Q1 = 187− 167 = 20.

Hence 50% of all people (in the sample) lie within 20 cm.

Note, that the standard deviation in the example has the physical unit cm,
whereas the variance has cm2. This illustrates the fact that the standard de-
viation has a more direct interpretation than the variance in general.

1.4.3 Measures of relation: correlation and covariance

When two observational variables are available for each observational unit, it
may be of interest to quantify the relation between the two, that is to quantify
how the two variables co-vary with each other, their sample covariance and/or
sample correlation.
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Example 1.17 Student heights and weights

In addition to the previously given student heights we also have their weights (in
kg) available

Heights (xi) 168 161 167 179 184 166 198 187 191 179
Weights (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9

.

The relation between weights and heights can be illustrated by the so-called scatter-
plot, cf. Section 1.6.4, where e.g. weights are plotted versus heights:
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x = 178

y = 78.1

Each point in the plot corresponds to one student - here illustrated by using the
observation number as plot symbol. The (expected) relation is pretty clear now -
different wordings could be used for what we see:

• Weights and heights are related to each other

• Higher students tend to weigh more than smaller students

• There is an increasing pattern from left to right in the "point cloud”

• If the point cloud is seen as an (approximate) ellipse, then the ellipse clearly is
horizontally upwards ”tilted”.

• Weights and heights are (positively) correlated to each other

The sample covariance and sample correlation coefficients are a summary statis-
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tics that can be calculated for two (related) sets of observations. They quantify
the (linear) strength of the relation between the two. They are calculated by
combining the two sets of observations (and the means and standard deviations
from the two) in the following ways:

Definition 1.18 Sample covariance

The sample covariance is

sxy =
1

n− 1

n

∑
i=1

(xi − x̄) (yi − ȳ) . (1-11)

Definition 1.19 Sample correlation

The sample correlation coefficient is

r =
1

n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
=

sxy

sx · sy
, (1-12)

where sx and sy is the sample standard deviation for x and y respectively.

When xi− x̄ and yi− ȳ have the same sign, then the point (xi, yi) give a positive
contribution to the sample correlation coefficient and when they have opposite
signs the point give a negative contribution to the sample correlation coefficient,
as illustrated here:

Example 1.20 Student heights and weights

The sample means are found to be

x̄ = 178 and ȳ = 78.1.

Using these we can show how each student deviate from the average height and
weight (these deviations are exactly used for the sample correlation and covariance
computations)

Student 1 2 3 4 5 6 7 8 9 10
Height (xi) 168 161 167 179 184 166 198 187 191 179
Weight (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9
(xi − x̄) -10 -17 -11 1 6 -12 20 9 13 1
(yi − ȳ) -12.6 -19.8 -10 7.6 2.4 -14.7 24.5 13.3 8.6 0.8
(xi − x̄)(yi − ȳ) 126.1 336.8 110.1 7.6 14.3 176.5 489.8 119.6 111.7 0.8
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Student 1 is below average on both height and weight (−10 and − 12.6). Student
10 is above average on both height and weight (+1 and + 0.8).s

The sample covariance is then given by the sum of the 10 numbers in the last row of
the table

sxy =
1
9
(126.1 + 336.8 + 110.1 + 7.6 + 14.3 + 176.5 + 489.8 + 119.6 + 111.7 + 0.8)

=
1
9
· 1493.3

= 165.9

And the sample correlation is then found from this number and the standard devia-
tions

sx = 12.21 and sy = 14.07.

(the details of the sy computation is not shown). Thus we get the sample correlation
as

r =
165.9

12.21 · 14.07
= 0.97.

Note how all 10 contributions to the sample covariance are positive in the ex-
ample case - in line with the fact that all observations are found in the first
and third quadrants of the scatter plot (where the quadrants are defined by the
sample means of x and y). Observations in second and fourth quadrant would
contribute with negative numbers to the sum, hence such observations would
be from students with below average on one feature while above average on the
other. Then it is clear that: had all students been like that, then the covariance
and the correlation would have been negative, in line with a negative (down-
wards) trend in the relation.

We can state (without proofs) a number of properties of the sample correlation
r:
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Remark 1.21 Properties of the sample correlation, r

• r is always between −1 and 1: −1 ≤ r ≤ 1

• r measures the degree of linear relation between x and y

• r = ±1 if and only if all points in the scatterplot are exactly on a line

• r > 0 if and only if the general trend in the scatterplot is positive

• r < 0 if and only if the general trend in the scatterplot is negative

The sample correlation coefficient measures the degree of linear relation be-
tween x and y, which imply that we might fail to detect non-linear relationships,
illustrated in the following plot of four different point clouds and their sample
correlations:
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The sample correlation in both the bottom plots are close to zero, but as we see
from the plot this number itself doesn’t imply that there no relation between y
and x - which clearly is the case in the bottom right and highly non-linear case.

Sample covariances and correlation are closely related to the topic of linear re-
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gression, treated in Chapter 5 and 6 , where we will treat in more detail how
we can find the line that could be added to such scatter-plots to describe the re-
lation between x and y in a different (but related) way, as well as the statistical
analysis used for this.

1.5 Introduction to Python

Python is an open source software that you can download to your own laptop
for free. Please follow the instructions provided by the Python support team.

Visual Studio Code (VS Code) is an integrated development environment (IDE)
that can be used to write, edit and run Python code (and many other types of
code). VS Code will be used in the course and we will primarily be running
Jupyter Notebooks. Please follow the instructions provided by the Python sup-
port team in order to install VS Code on your own laptop.

In this course (and throughout the book) we will work with several Python
Libraries (also referred to as packages or modules). Libraries are collections of
functions, methods, and types that extend the capabilities of Python. Libraries
need to be installed before you can "import" them to use in your code. This is
done with "conda install" (or "pip install"). Once installed (which you typically
only do once and for all in the terminal) the libraries must be imported (which
you typically do in the beginning of each of your scripts or notebooks).

In this book we will use the following abbreviations for some commonly used
libraries:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statsmodels.stats.power as smp
import statsmodels.stats.proportion as smprop

1.5.1 Executing code

Once you have opened a Jupyer Notebook in VS Code, you can execute a "code
cell" by hitting Shift+Enter or by using the "Run" button. For instance:
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# Add two numbers in the console
2+3

5

You can also assign a value to a variable, for instance:

# Assign the value 3 to y
y = 3
print(y)

3

The execution of code cells in a Jupyter Notebook is independent of
their order in the notebook interface. This means that the state of the
notebook (variables, functions, imports, etc.) is determined by the or-
der in which cells are executed, not by their position in the notebook.
If you execute cells out of order, you might get unexpected results be-
cause the notebook’s state depends on the order of execution. It’s a
good practice to execute cells sequentially from top to bottom to en-
sure the notebook state is consistent. Occasionally, it can be helpful to
use the "Kernel" -> "Restart & Run All" option to ensure that all cells
are executed in order from a clean state.

1.5.2 Vectors and Numpy Arrays

We will often want to work with a datatype that behaves like a vector - for this
we use Numpy Arrays:

import numpy as np
x = np.array([1, 4, 6, 2])
print(x)

[1 4 6 2]

print(type(x))
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<class 'numpy.ndarray'>

You can use "arange()", if you need a sequence, e.g. 1 to 10:

import numpy as np
x = np.arange(10)
print(x)

[0 1 2 3 4 5 6 7 8 9]

Python has many different data types and Numpy Arrays is just one
of them. In Python it is also very common to work with lists. Beware
that Python lists can contain elements of different data types (e.g., both
numbers and text) and generally do not support vectorized operations.

1.5.3 Descriptive statistics

All the summary statistics measures presented in Section 1.4 can be found as
functions in the Numpy library:

• np.mean(x) - mean value of the vector x

• np.var(x, ddof=1) - sample variance (notice ddof = 1)

• np.std(x, ddof=1) - sample standard deviation

• np.median(x) - median

• np.percentile(x,p, method=’averaged_inverted_cdf’) - finds the pth
percentiletile. p can consist of several different values, e.g. np.percentile(x,[25,75],
method=’averaged_inverted_cdf’)

• np.cov(x, y, ddof=1) - the covariance of the vectors x and y

• np.corrcoef(x, y) - the correlation

Please again note that the words quantiles and percentiles are used interchange-
ably - they are essentially synonyms meaning exactly the same, even though the
formal distinction has been clarified earlier.
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Example 1.22 Summary statistics

Consider again the n = 10 data from Example 1.6. We can compute the sample mean
and sample median as follows:

# Sample Mean and Median
x = np.array([168, 161, 167, 179, 184, 166, 198, 187, 191, 179])
np.mean(x)

np.float64(178.0)

np.median(x)

np.float64(179.0)

The sample variance and sample standard deviation are found as follows:

# Sample variance and standard deviation
np.var(x, ddof=1)

np.float64(149.11111111111111)

np.sqrt(np.var(x, ddof=1))

np.float64(12.211106056009468)

np.std(x, ddof=1)

np.float64(12.211106056009468)

The sample quartiles can be found by using the quantile function as follows:

# Sample percentiles
np.percentile(x, [0,25,50,75,100], method='averaged_inverted_cdf')

array([161.000, 167.000, 179.000, 187.000, 198.000])
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The option “method=’averaged_inverted_cdf’” makes sure that the percentiles
found by the function is found using the definition given in Definition 1.7. By
default, the percentile function would use another definition (not detailed here).
Generally, we consider this default choice just as valid as the one explicitly given
here, it is merely a different one.

You can also generate percentiles using range(start, stop, step) (recall that
Python is "left inclusive, right exclusive"). For instance:

# Sample percentiles
np.percentile(x, list(range(0,110,10)), method='averaged_inverted_cdf')

array([161.000, 163.500, 166.500, 167.500, 173.500, 179.000, 181.500,
185.500, 189.000, 194.500, 198.000])

1.5.4 Use of Python in the course and at the exam

You should bring your laptop with Python installed with you to the teaching
activity and to the exam. We will need access to the so-called probability distri-
butions to do statistical computations, and the values of these distributions are
not otherwise part of the written material: These probability distributions are
part of many different software, also Excel, but it is part of the syllabus to be
able to work with these within Python.

Apart from access to these probability distributions, Python is used in three
ways in our course

1. As a pedagogical learning tool: The random variable simulation tools in-
built in Python enables the use of software as a way to illustrate and learn
the principles of statistical reasoning that are the main purposes of this
course.

2. As a pocket calculator substitute - that is making Python calculate ”man-
ually” - by simple routines - plus, minus, square root etc. whatever needs
to be calculated, that you have identified by applying the right formulas
from the proper definitions and methods in the written material.

3. As a ”probability calculus and statistical analysis machine” where e.g.
with some data fed into it, it will, by inbuilt functions and procedures
do all relevant computations for you and present the final results in some
overview tables and plots.
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We will see and present all three types of applications of Python during the
course. For the first type, the aim is not to learn how to use the given Python-
code itself but rather to learn from the insights that the code together with the
results of applying it is providing. It will be stated clearly whenever a Python-
example is of this type. Types 2 and 3 are specific tools that should be learned
as a part of the course and represent tools that are explicitly relevant in your
future engineering activity. It is clear that at some point one would love to just
do the last kind of applications. However, it must be stressed that even though
the program is able to calculate things for the user, understanding the details
of the calculations must NOT be forgotten - understanding the methods and
knowing the formulas is an important part of the syllabus, and will be checked
at the exam.

Remark 1.23 BRING and USE pen and paper PRIOR to using soft-
ware

For many of the exercises that you are asked to do it will not be possible to
just directly identify what Python-command(s) should be used to find the
results. The exercises are often to be seen as what could be termed “problem
mathematics” exercises. So, it is recommended to also bring and use pen
and paper to work with the exercises to be able to subsequently know how
to finally finish them by some Python-calculations. (If you adjusted yourself
to some digital version of ”pen-and-paper”, then this is fine of course.)

Remark 1.24 Python is not a substitute for your brain activity in
this course!

The Python software should be seen as the most fantastic and easy com-
putational companion that we can have for doing statistical computations
that we could have done ”manually”, if we wanted to spend the time doing
it. All definitions, formulas, methods, theorems etc. in the written material
should be known by the student, as should also certain Python-routines and
functions.

A good question to ask yourself each time that you apply en inbuilt Python-
function is: ”Would I know how to make this computation ”manually”?”. There
are few exceptions to this requirement in the course, but only a few. And for
these the question would be: ”Do I really understand what Python is computing
for me now?”
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1.6 Plotting, graphics - data visualisation

A really important part of working with data analysis is the visualization of the
raw data, as well as the results of the statistical analysis – the combination of
the two leads to reliable results. Let us focus on the first part now, which can
be seen as being part of the explorative descriptive analysis also mentioned in
Section 1.4. Depending on the data at hand different types of plots and graphics
could be relevant. One can distinguish between quantitative vs. categorical data.
We will touch on the following type of basic plots:

• Quantitative data:

– Frequency plots and histograms

– box plots

– cumulative distribution

– Scatter plot (xy plot)

• Categorical data:

– Bar charts

– Pie charts

1.6.1 Frequency distributions and the histogram

The frequency distribution is the count of occurrences of values in the sample
for different classes using some classification, for example in intervals or by
some other property. It is nicely depicted by the histogram, which is a bar plot
of the occurrences in each classes.
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Example 1.25 Histogram in Python

Consider again the n = 10 sample from Example 1.6.

# A histogram of the heights
plt.hist(x)
plt.show()
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The default histogram uses equidistant interval widths (the same width for all
intervals) and depicts the raw frequencies/counts in each interval. One may
change the scale into showing what we will learn to be densities by dividing the
raw counts by n and the interval width, i.e.

"Interval count"
n · ("Interval width")

.

By plotting the densities a density histogram also called the empirical density
the area of all the bars add up to 1:
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Example 1.26 Empirical density in Python

# A density histogram or empirical density of the heights
plt.hist(x, bins=8, edgecolor='black', color='red', alpha=0.7, density=True)
plt.show()
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The function hist makes some choice of the number of classess based on the
number of observations - it may be changed by the user option nclass as illus-
trated here.

1.6.2 Cumulative distributions

The cumulative distribution can be visualized simply as the cumulated relative
frequencies either across classes, as also used in the histogram, or individual
data points, which is then called the empirical cumulative distribution function:
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Example 1.27 Cumulative distribution plot in Python

# Empirical cumulative distribution plot
plt.ecdf(x)
plt.show()
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The empirical cumulative distribution function Fn is a step function with jumps
i/n at observation values, where i is the number of identical(tied) observations
at that value.

For observations (x1, x2, . . . , xn), Fn(x) is the fraction of observations less or
equal to x, that mathematically can be expressed as

Fn(x) = ∑
j where xj≤x

1
n

. (1-13)

1.6.3 The box plot and the modified box plot

The so-called box plot in its basic form depicts the five quartiles (min, Q1, me-
dian, Q3, max) with a box from Q1 to Q3 emphasizing the Inter Quartile Range
(IQR):
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Example 1.28 Box plot in Python

plt.boxplot(x)
plt.show()
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In the modified box plot the whiskersonly extend to the min. and max. obser-
vation if they are not too far away from the box: defined to be 1.5× IQR. Ob-
servations further away are considered as extreme observations (also called fliers)
and will be plotted individually - hence the whiskers extend from the smallest
to the largest observation within a distance of 1.5× IQR of the box (defined as
either 1.5× IQR larger than Q3 or 1.5× IQR smaller than Q1).
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Example 1.29 Box plot in Python

If we add an extreme observation, 235 cm, to the heights sample and make the mod-
ified box plot - the default - and the basic box plot, then we have:

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
# with default whiskers
ax1.boxplot(np.append(x, [235]))
# with whiskers covering 100% of the data:
ax2.boxplot(np.append(x, [235]), whis=(0,100))
plt.show()
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Note that since there was no extreme observations among the original 10 observa-
tions, the two ”different” plots would be the same if we didn’t add the extreme 235
cm observation.

The box plot hence is an alternative to the histogram in visualising the distribu-
tion of the sample. It is a convenient way of comparing distributions in different
groups, if such data is at hand.
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Example 1.30 Box plot in Python

This example shows some ways of working with Python to illustrate data.

In another statistics course the following heights of 17 female and 23 male students
were found:

Males 152 171 173 173 178 179 180 180 182 182 182 185
185 185 185 185 186 187 190 190 192 192 197

Females 159 166 168 168 171 171 172 172 173 174 175 175
175 175 175 177 178

When working with datasets in Python it is often useful to use the Pandas. Here we
show an example of making a boxplot with the Pandas library (data is stored as a
’Pandas DataFrame’):

# Box plot with two groups
data = pd.DataFrame({

'males': [152, 171, 173, 173, 178, 179, 180, 180, 182, 182, 182,
185, 185, 185, 185, 185, 186, 187, 190, 190, 192, 192,
197],

'females':[159, 166, 168, 168, 171, 171, 172, 172, 173, 174, 175,
175, 175, 175, 175, 177, 178, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan]

})
data.boxplot()
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180

190
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At this point, it should be noted that in real work with data using Python, one
would generally not import data by explicit listings as we did above. This only
works for very small data sets. Usually the data is imported from somewhere
else, e.g. from a spread sheet exported in a .csv (comma separated values) format
as shown here:

Example 1.31 Read and explore data in Python

The gender grouped student heights data used in Example 1.30 is avail-
able as a .csv-file via http://www2.compute.dtu.dk/courses/introstat/data/
studentheights.csv. The structure of the data file, as it would appear in a spread
sheet program (e.g. LibreOffice Calc or Excel) is two columns and 40+1 rows includ-
ing a header row:

1 Height Gender
2 152 male
3 171 male
4 173 male
. . .
. . .
24 197 male
25 159 female
26 166 female
27 168 female
. . .
. . .
39 175 female
40 177 female
41 178 female

The data can now be imported into Python using the Pandas function read_csv:

# Read the data (note that per default sep="," but here semicolon)
studentheights = pd.read_csv('studentheights.csv', sep=';')

The resulting object studentheights is now a Pandas DataFrame, which is very use-
ful for working with tabular data in Python. There are some ways of getting a quick
look at what kind of data is really in a DataFrame:

http://www2.compute.dtu.dk/courses/introstat/data/studentheights.csv
http://www2.compute.dtu.dk/courses/introstat/data/studentheights.csv
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# Have a look at the first 6 rows of the data
studentheights.head()

Height Gender
0 152 male
1 171 male
2 173 male
3 173 male
4 178 male

# Get an overview
studentheights.info(verbose=True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40 entries, 0 to 39
Data columns (total 2 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Height 40 non-null int64
1 Gender 40 non-null object

dtypes: int64(1), object(1)
memory usage: 768.0+ bytes

# Get a summary of each column/variable in the data
studentheights.describe(include='all')

Height Gender
count 40.00000 40
unique NaN 2
top NaN male
freq NaN 23
mean 177.87500 NaN
std 9.09265 NaN
min 152.00000 NaN
25% 172.75000 NaN
50% 177.50000 NaN
75% 185.00000 NaN
max 197.00000 NaN

The describe functions outputs different statistics for numeric and non-numeric
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columns (see documentation for Pandas.DataFrame.describe). A data structure
like this is commonly encountered (and often the only needed) for statistical analy-
sis. The gender grouped box plot can now be generated by:

# Box plot for each gender
studentheights.boxplot(by='Gender')
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1.6.4 The Scatter plot

The scatter plot can be used for two quantitative variables. It is simply one
variable plotted versus the other using some plotting symbol.

Example 1.32 Explore mtcars data from R

Now we will use a data set which is available in the Statsmodels Library, and which
is originally from the programming language R. Here we will use the mtcars data
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set, but there are many other data sets available, that may be useful for practising
and testing. If you read the documentation you will find the following information
about the mtcars dataset:

“The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel con-
sumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74
models).”

Let us plot the gasoline use, (mpg=miles pr. gallon), versus the weight (wt):

# get mtcars data as a DataFrame
mtcars = sm.datasets.get_rdataset('mtcars').data
type(mtcars)

<class 'pandas.core.frame.DataFrame'>

# To make 2 plots
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
# First the default version
mtcars.plot.scatter('wt', 'mpg', ax=ax1)
# Then a nicer version
mtcars.plot.scatter('wt', 'mpg', c='drat', colormap='viridis',

title='Inverse fuel usage vs. size',
xlabel = 'Car Weight (1000lbs)',
ylabel='Miles per Galon',
grid=True, ax=ax2)
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In the second plot we have added a third variable (the column ’drat’, rear axle ratio)
using a colorbar. Notice also how the plotting commands are a little bit different
as we are now using both Matplotlib and Pandas. There are many other ways to
plot in Python and we recommend that you practice using the internet and relevant
documentation to get help.

1.6.5 Bar plots and Pie charts

All the plots described so far were for quantitative variables. For categorical
variables the natural basic plot would be a bar plot or pie chart visualizing the
relative frequencies in each category.

Example 1.33 Bar plots and Pie charts

For the gender grouped student heights data used in Example 1.30 we can produce
a table with counts of each gender and plot the gender distribution by:
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# Table
studentheights.groupby('Gender').size()

Gender
female 17
male 23
dtype: int64

# Barplot and Pie chart
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
studentheights.groupby('Gender').size().plot(kind='bar', ax=ax1, rot=0)
studentheights.groupby('Gender').size().plot(kind='pie', ax=ax2)
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Notice that the table produced by ’studentheights.groupby(’Gender’).size()’ re-
turn a Pandas Series, which is slightly different from a Pandas DataFrame (the main
difference here is that a Series is a one-dimensional labeled array and a DataFrame
is a two-dimensional labeled data structure).

1.6.6 More plots in Python

Python has many libraries that can produce statistical plots. In this course we
will mostly use Matplotlib, but you can also explore the library Seaborn: https:
//seaborn.pydata.org/.

https://seaborn.pydata.org/
https://seaborn.pydata.org/
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Chapter 2

Probability and simulation

In this chapter elements from probability theory are introduced. These are
needed to form the basic mathematical description of randomness. For example
for calculating the probabilities of outcomes in various types of experimental or
observational study setups. Small illustrative examples, such as e.g. dice rolls
and lottery draws, and natural phenomena such as the waiting time between
radioactive decays are used as throughout. But the scope of probability theory
and it’s use in society, science and business, not least engineering endeavour,
goes way beyond these small examples. The theory is introduced together with
illustrative code examples, which the reader is encouraged to try and interact
with in parallel to reading the text. Many of these are of the learning type, cf.
the discussion of the way Python is used in the course in Section 1.5.

2.1 Random variable

The basic building blocks to describe random outcomes of an experiment are
introduced in this section. The definition of an experiment is quite broad. It can
be an experiment, which is carried out under controlled conditions e.g. in a
laboratory or flipping a coin, as well as an experiment in conditions which are
not controlled, where for example a process is observed e.g. observations of
the GNP or measurements taken with a space telescope. Hence, an experiment
can be thought of as any setting in which the outcome cannot be fully known.
This for example also includes measurement noise, which are random “errors”
related to the system used to observe with, maybe originating from noise in
electrical circuits or small turbulence around the sensor. Measurements will
always contain some noise.

First the sample space is defined:
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Definition 2.1

The sample space S is the set of all possible outcomes of an experiment.

Example 2.2

Consider an experiment in which a person will throw two paper balls with the pur-
pose of hitting a wastebasket. All the possible outcomes forms the sample space of
this experiment as

S =
{
(miss,miss), (hit,miss), (miss,hit), (hit,hit)

}
. (2-1)

Now a random variable can be defined:

Definition 2.3

A random variable is a function which assigns a numerical value to each out-
come in the sample space. In this book random variables are denoted with
capital letters, e.g.

X, Y, . . . . (2-2)

Example 2.4

Continuing the paper ball example above, a random variable can be defined as the
number of hits, thus

X
(
(miss,miss)

)
= 0, (2-3)

X
(
(hit,miss)

)
= 1, (2-4)

X
(
(miss,hit)

)
= 1, (2-5)

X
(
(hit,hit)

)
= 2. (2-6)

In this case the random variable is a function which maps the sample space S to
positive integers, i.e. X : S→N0.



Chapter 2 2.1 RANDOM VARIABLE 42

Remark 2.5

The random variable represents a value of the outcome before the experiment
is carried out. Usually the experiment is carried out n times and there are
random variables for each of them

{Xi : 1, 2, . . . , n}. (2-7)

After the experiment has been carried out n times a set of values of the ran-
dom variable is available as

{xi : 1, 2, . . . , n}. (2-8)

Each value is called a realization or observation of the random variable and
is denoted with a small letter sub-scripted with an index i, as introduced in
Chapter 1.

Finally, in order to quantify probability, a random variable is associated with
a probability distribution. The distribution can either be discrete or continuous
depending on the nature of the outcomes:

• Discrete outcomes can for example be: the outcome of a dice roll, the num-
ber of children per family, or the number of failures of a machine per year.
Hence some countable phenomena which can be represented by an inte-
ger.

• Continuous outcomes can for example by: the weight of the yearly har-
vest, the time spend on homework each week, or the electricity generation
per hour. Hence a phenomena which can be represented by a continuous
value.

Furthermore, the outcome can either be unlimited or limited. This is most obvi-
ous in the discrete case, e.g. a dice roll is limited to the values between 1 and 6.
However it is also often the case for continuous random variables, for example
many are non-negative (weights, distances, etc.) and proportions are limited to
a range between 0 and 1.

Conceptually there is no difference between the discrete and the continuous
case, however it is easier to distinguish since the formulas, which in the discrete
case are with sums, in the continuous case are with integrals. In the remaining
of this chapter, first the discrete case is presented and then the continuous.
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2.2 Discrete random variables

In this section discrete distributions and their properties are introduced. A dis-
crete random variable has discrete outcomes and follows a discrete distribution.

To exemplify, consider the outcome of one roll of a fair six-sided dice as the
random variable Xfair. It has six possible outcomes, each with equal probability.
This is specified with the probability density function.

Definition 2.6 The pdf of a discrete random variable

For a discrete random variable X the probability density function (pdf) is

f (x) = P(X = x). (2-9)

It assigns a probability to every possible outcome value x.
A discrete pdf fulfils two properties: there are no negative probabilities for
any outcome value

f (x) ≥ 0 for all x, (2-10)

and the probabilities for all outcome values sum to one

∑
all x

f (x) = 1. (2-11)

Example 2.7

For the fair dice the pdf is

x 1 2 3 4 5 6
fXfair(x) 1

6
1
6

1
6

1
6

1
6

1
6

If the dice is not fair, maybe it has been modified to increase the probability of rolling
a six, the pdf could for example be

x 1 2 3 4 5 6
fXunfair(x) 1

7
1
7

1
7

1
7

1
7

2
7

where Xunfair is a random variable representing the value of a roll with the unfair
dice.
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The pdfs are plotted: the left plot shows the pdf of a fair dice and the right plot the
pdf of an unfair dice:
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Remark 2.8

Note that the pdfs has subscript with the symbol of the random variable to
which they belong. This is done when there is a need to distinguish between
pdfs e.g. for several random variables. For example if two random variables
X and Y are used in same context, then: fX(x) is the pdf for X and fY(x) for
Y, similarly the sample standard deviation sX is for X and sY is for Y, and so
forth.

The cumulated distribution function (cdf), or simply the distribution function, is of-
ten used.

Definition 2.9 The cdf of a discrete random variable

The cumulated distribution function (cdf) for the discrete case is the probability
of realizing an outcome below or equal to the value x

F(x) = P(X ≤ x) = ∑
j where xj≤x

f (xj) = ∑
j where xj≤x

P(X = xj). (2-12)

The probability that the outcome of X is in a range is

P(a < X ≤ b) = F(b)− F(a). (2-13)



Chapter 2 2.2 DISCRETE RANDOM VARIABLES 45

For the fair dice the probability of an outcome below or equal to 4 can be calcu-
lated

FXfair(4) =
4

∑
j=1

fXfair(xj) =
1
6
+

1
6
+

1
6
+

1
6
=

2
3

. (2-14)

Example 2.10

For the fair dice the cdf is

x 1 2 3 4 5 6
FXfair(x) 1
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6 1

The cdf for a fair dice is plotted in the left plot and the cdf for an unfair dice is plotted
in the right plot:
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2.2.1 Introduction to simulation

One nice thing about having computers available is that we try things in virtual
reality - this we can here use here to play around while learning how prob-
ability and statistics work. With the pdf defined an experiment can easily be
simulated, i.e. instead of carrying out the experiment in reality it is carried out
using a model on the computer. When the simulation includes generating ran-
dom numbers it is called a stochastic simulation. Such simulation tools are readily
available within Python, and it can be used for as well learning purposes as a
way to do large scale complex probabilistic and statistical computations. For
now it will be used in the first way.

Example 2.11 Simulation of rolling a dice

Let’s simulate the experiment of rolling a dice using the following

# Make a random draw from (1,2,3,4,5,6) with equal probability for each outcome
np.random.choice(range(1, 7), size=1)

The simulation becomes more interesting when the experiment is repeated many
times, then we have a sample and can calculate the empirical density function (or em-
pirical pdf or density histogram, see Section 1.6.1) as a discrete histogram and actually
“see” the shape of the pdf

# Simulate a fair dice
# Number of simulated realizations
n = 30
# Draw independently from the set (1,2,3,4,5,6) with equal probability
xFair = np.random.choice(range(1, 7), size=n, replace=True)
# Count the number of each outcome using the bincount function
counts = np.bincount(xFair)
# Plot the pdf
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.bar(range(1,7), [1/6]*6, color='red')
# Plot the empirical pdf
ax1.bar(range(1,7), counts[1:7]/n)
# Plot the cdf
ax2.bar(range(1,7), np.cumsum([1/6]*6), color='red')
# Add the empirical cdf
ax2.bar(range(1,7), np.cumsum(counts[1:7]/n))
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Try simulating with different number of rolls n and describe how this affects
the accuracy of the empirical pdf compared to the pdf?

Now repeat this with the unfair dice

# Simulate an unfair dice
# Number of simulated realizations
n = 30
# Draw independently from the set (1,2,3,4,5,6) with higher
# probability for a six
probs = [1/7, 1/7, 1/7, 1/7, 1/7, 2/7]
xUnfair = np.random.choice(range(1, 7), size=n, replace=True, p=probs)
counts = np.bincount(xUnfair)
# Plot the pdf
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.bar(range(1,7), probs, color='red')
# Plot the empirical pdf
ax1.bar(range(1,7), counts[1:7]/n)
# Plot the cdf
ax2.bar(range(1,7), np.cumsum(probs), color='red')
# Add the empirical cdf
ax2.bar(range(1,7), np.cumsum(counts[1:7]/n))
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Compare the fair and the unfair dice simulations:

How did the empirical pdf change?

By simply observing the empirical pdf can we be sure to distinguish be-
tween the fair and the unfair dice?

How does the number of rolls n affect how well we can distinguish the two
dices?

One reason to simulate becomes quite clear here: it would take considerably
more time to actually carry out these experiments. Furthermore, sometimes
calculating the theoretical properties of random variables (e.g. products of sev-
eral random variables etc.) are impossible and simulations can be a useful way
to obtain such results.

Random number sequences generated with software algorithms have the prop-
erties of real random numbers, e.g. they are independent, but are in fact de-
terministic sequences depending on a seed, which sets an initial value of the
sequence. Therefore they are named pseudo random numbers, since they behave
like and are used as random numbers in simulations, but are in fact determin-
istic sequences.
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Remark 2.12 Random numbers and seed in Python

In Python the initial values can be set with a single number called the seed as
demonstrated with the following Python code. As default the seed is created
from the time of start-up of a new instance of Python. A way to generate
truly (i.e. non-pseudo) random numbers can be to sample some physical
phenomena, for example atmospheric noise as done at www.random.org.

# The random numbers generated depends on the seed

# Set the seed
np.random.seed(127)
# Generate a (pseudo) random sequence
print(np.random.rand(10))

[0.524 0.040 0.186 0.773 0.552 0.086 0.441 0.716 0.671 0.473]

# Generate again and see that new numbers are generated
print(np.random.rand(10))

[0.906 0.105 0.175 0.089 0.650 0.071 0.460 0.907 0.094 0.633]

# Set the seed and the same numbers as before just after the
# seed was set are generated
np.random.seed(127)
print(np.random.rand(10))

[0.524 0.040 0.186 0.773 0.552 0.086 0.441 0.716 0.671 0.473]

2.2.2 Mean and variance

In Chapter 1 the sample mean and the sample variance were introduced. They
indicate respectively the centring and the spread of the observations in a sam-
ple. In this section the mean and variance are introduced. They are properties
of the distribution of a random variable, they are called population parameters.
The mean indicates where the distribution is centred. The variance indicates

www.random.org
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the spread of the distribution.

Mean and expected value

The mean (µ) of a random variable is the population parameter which most sta-
tistical analysis focus on. It is formally defined as a function E(X): the expected
value of the random variable X.

Definition 2.13 Mean value

The mean of a discrete random variable X is

µ = E(X) =
∞

∑
j=1

xj f (xj), (2-15)

where xj is the value and f (xj) is the probability that X takes the outcome
value xj.

The mean is simply the weighted average over all possible outcome values,
weighted with the corresponding probability. As indicated in the definition
there might be infinitely many possible outcome values, hence, even if the total
sum of probabilities is one, then the probabilities must go sufficiently fast to
zero for increasing values of X in order for the sum to be defined.

Example 2.14

For the fair dice the mean is calculated by

µxfair = E(Xfair) = 1
1
6
+ 2

1
6
+ 3

1
6
+ 4

1
6
+ 5

1
6
+ 6

1
6
= 3.5,

for the unfair dice the mean is

µxunfair = E(Xunfair) = 1
1
7
+ 2

1
7
+ 3

1
7
+ 4

1
7
+ 5

1
7
+ 6

2
7
≈ 3.86.

The mean of a random variable express the limiting value of an average of many
outcomes. If a fair dice is rolled a really high number of times the sample mean
of these will be very close to 3.5. For the statistical reasoning related to the use of
a sample mean as an estimate for µ, the same property ensures that envisioning
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many sample means (with the same n), a meta like thinking, then the mean of
such many repeated sample means will be close to µ.

After an experiment has been carried out n times then the sample mean or average
can be calculated as previously defined in Chapter 1

µ̂ = x̄ =
1
n

n

∑
i

xi. (2-16)

It is called a statistic, which means that it is calculated from a sample. Note the
use of a hat in the notation over µ: this indicates that it is an estimate of the real
underlying mean.

Our intuition tells us that the estimate (µ̂) will be close to true underlying ex-
pectation (µ) when n is large. This is indeed the case, to be more specific
E
[

1
n ∑ Xi

]
= µ (when E[Xi] = µ), and we say that the average is a central

estimator for the expectation. The exact quantification of these qualitative state-
ments will be covered in Chapter 3.

Now play a little around with the mean and the sample mean with some simu-
lations.

Example 2.15 Simulate and estimate the mean

Carrying out the experiment more than one time an estimate of the mean, i.e. the
sample mean, can be calculated. Simulate rolling the fair dice

# Number of realizations
n = 30
# Simulate rolls with a fair dice
xFair = np.random.choice(range(1, 7), size=n, replace=True)
# Calculate the sample mean
xFair.sum()/n

np.float64(3.3333333333333335)

# or
xFair.mean()

np.float64(3.3333333333333335)

Let us see what happens with the sample mean of the unfair dice by simulating the
same number of rolls
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# Simulate an unfair dice

# n realizations
probs = [1/7, 1/7, 1/7, 1/7, 1/7, 2/7] # Higher probability for a six
xUnfair = np.random.choice(range(1, 7), size=n, replace=True, p=probs)
# Calculate the sample mean
xUnfair.mean()

np.float64(4.166666666666667)

Consider the mean of the unfair dice and compare it to the mean of the fair
dice (see Example 2.14). Is this in accordance with your simulation results?

Let us again turn to how much we can “see” from the simulations and the impact
of the number of realizations n on the estimation. In statistics the term information is
used to refer to how much information is embedded in the data, and therefore how
accurate different properties (parameters) can be estimated from the data.

Repeat the simulations several times with n = 30. By simply comparing the
sample means from a single simulation can it then be determined if the two
means really are different?

Repeat the simulations several times and increase n. What happens with to
the ’accuracy’ of the sample mean compared to the real mean? and thereby
how well it can be inferred if the sample means are different?

Does the information embedded in the data increase or decrease when n is
increased?

Variance and standard deviation

The second most used population parameter is the variance (or standard devia-
tion). It is a measure describing the spread of the distribution, more specifically
the spread away from the mean.
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Definition 2.16 Variance

The variance of a discrete random variable X is

σ2 = V(X) = E[(X− µ)2] =
∞

∑
i=1

(xi − µ)2 f (xi), (2-17)

where xi is the outcome value and f (xi) is the pdf of the ith outcome value.
The standard deviation σ is the square root of the variance.

The variance is the expected value (i.e. average (weighted by probabilities)) of
the squared distance between the outcome and the mean value.

Remark 2.17

Notice that the variance cannot be negative.

The standard deviation is measured on the same scale (same units) as the ran-
dom variable, which is not case for the variance. Therefore the standard de-
viation can much easier be interpreted, when communicating the spread of a
distribution.

Consider how the expected value is calculated in Equation (2-15). One
can think of the squared distance as a new random variable that has
an expected value which is the variance of X.

Example 2.18

The variance of rolls with the fair dice is

σ2
xfair = E[(Xfair − µXfair)2]

= (1− 3.5)2 1
6
+ (2− 3.5)2 1

6
+ (3− 3.5)2 1

6
+ (4− 3.5)2 1

6
+ (5− 3.5)2 1

6
+ (6− 3.5)2 1

6

=
70
24

≈ 2.92.

It was seen in Chapter 1, that after an experiment has been carried out n times
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the sample variance can be calculated as defined previously by

s2 = σ̂2 =
1

n− 1

n

∑
i=1

(xi − x̄)2, (2-18)

and hence thereby also sample standard deviation s.

Again our intuition tells us that the statistic (e.g. sample variance), should in
some sense converge to the true variance - this is indeed the case and the we
call the sample variance a central estimator for the true underlying variance.
This convergence will be quantified for a special case in Chapter 3.

The sample variance is calculated by:

• Take the sample mean: x̄

• Take the distance for each sample: xi − x̄

• Finally, take the average of the squared distances (using n− 1 in
the denominator, see Chapter 1)

Example 2.19 Simulate and estimate the variance

Return to the simulations. First calculate the sample variance from n rolls of a fair
dice

# Simulate a fair dice and calculate the sample variance

# Number of realizations
n = 30
# Simulate
xFair = np.random.choice(range(1,7), size=n, replace=True)
# Calculate the distance for each sample to the sample mean
distances = xFair - xFair.mean()
# Calculate the average of the squared distances
sum(distances**2)/(n-1)

np.float64(2.791954022988505)

# Or use the built in function
xFair.var(ddof=1)

np.float64(2.7919540229885054)
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Let us then try to play with variance in the dice example. Let us now consider a
four-sided dice. The pdf is

x 1 2 3 4
FXfairFour(x) 1

4
1
4

1
4

1
4

Plot the pdf for both the six-sided dice and the four-sided dice

# Plot the pdf of the six-sided dice and the four-sided dice
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.bar(range(1, 7), [1/6] * 6, color='red')
ax2.bar(range(1, 5), [1/4] * 4, color='blue')
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# Calculate the means and variances of the dices

# The means
muXSixsided = np.sum(np.array([1,2,3,4,5,6])*1/6)
muXFoursided = np.sum(np.array([1,2,3,4])*1/4)
# The variances
print(np.sum((np.array([1,2,3,4,5,6]) - muXSixsided)**2 * 1/6))

2.916666666666667

print(np.sum((np.array([1,2,3,4]) - muXFoursided)**2 * 1/4))

1.25
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Which dice outcome has the highest variance? is that as you had antici-
pated?
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2.3 Discrete distributions

In this section the discrete distributions included in the material are presented.
See the overview of all distributions in the collection of formulas Section A.2.1.

In the Python library Scipy, implementations of many different distributions are
available. For each distribution at least the following is available

• The pdf is available by using ’.pmf()’, e.g. for the binomial distribution
scipy.stats.binom.pmf() (use ’.pmf()’ for discrete cases and ’.pdf()’
for continuous cases)

• The cdf is available by using ’.cdf()’, e.g. scipy.stats.binom.cdf()

• The quantiles by using ’.ppf()’, e.g. scipy.stats.binom.ppf()

• Random number generation by using ’.rvs()’, e.g. scipy.stats.binom.rvs()

Examples of these functions are demonstrated below in this section for the dis-
crete and later for the continuous distributions, see them demonstrated for the
normal distribution in Example 2.45.

2.3.1 Binomial distribution

The binomial distribution is a very important discrete distribution and appears
in many applications, it is presented in this section. In statistics it is typically
used for proportions as explained in Chapter 7.

If an experiment has two possible outcomes (e.g. failure or success, no or yes, 0
or 1) and is repeated more than one time, then the number of successes may be
binomial distributed. For example the number of heads obtained after a certain
number of flips with a coin. Each repetition must be independent. In relation to
random sampling this corresponds to successive draws with replacement (think
of drawing notes from a hat, where after each draw the note is put back again,
i.e. the drawn number is replaced again).
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Definition 2.20 Binomial distribution

Let the random variable X be binomial distributed

X ∼ B(n, p), (2-19)

where n is number of independent draws and p is the probability of a suc-
cess in each draw.
The binomial pdf describes probability of obtaining x successes

f (x; n, p) = P(X = x) =

(
n
x

)
px(1− p)n−x, (2-20)

where
(

n
x

)
=

n!
x!(n− x)!

, (2-21)

is the number of distinct sets of x elements which can be chosen from a set
of n elements. Remember that n! = n · (n− 1) · . . . · 2 · 1.

Theorem 2.21 Mean and variance

The mean of a binomial distributed random variable is

µ = np, (2-22)

and the variance is

σ2 = np(1− p). (2-23)

Actually this can be proved by calculating the mean using Definition 2.13 and
the variance using Definition 2.16.



Chapter 2 2.3 DISCRETE DISTRIBUTIONS 59

Example 2.22 Simulation with a binomial distribution

The binomial distribution for 10 flips with a coin describe probabilities of getting x
heads (or equivalently tails)

# Simulate a binomial distributed experiment

# Number of flips
nFlips = 10
# The possible outcomes are (0,1,...,nFlips)
xSeq = list(range(0,nFlips))
# Use the binom.pmf() function which returns the pdf
pdfSeq = stats.binom.pmf(xSeq, nFlips, 0.5)
# Plot the density
plt.bar(xSeq, pdfSeq, color='black', width=0.1)
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Example 2.23 Simulate 30 successive dice rolls

In the previous examples successive rolls of a dice was simulated. If a random vari-
able which counts the number of sixes obtained Xsix is defined, it follows a binomial
distribution

# Simulate 30 successive dice rolls
Xfair = np.random.choice(range(1,7), size=30, replace=True)
# Count the number sixes obtained
sum(Xfair==6)

np.int64(5)

# This is equivalent to
stats.binom.rvs(n=30, p=1/6)

4

2.3.2 Hypergeometric distribution

The hypergeometric distribution describes number of successes from successive
draws without replacement.
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Definition 2.24 Hypergeometric distribution

Let the random variable X be the number of successes in n draws without
replacement. Then X follows the hypergeometric distribution

X ∼ H(n, a, N), (2-24)

where a is the number of successes in the N elements large population. The
probability of obtaining x successes is described by the hypergeometric pdf

f (x; n, a, N) = P(X = x) =
(a

x)(
N−a
n−x)

(N
n )

. (2-25)

The notation
(

a
b

)
=

a!
b!(a− b)!

, (2-26)

represents the number of distinct sets of b elements which can be chosen
from a set of a elements.

Theorem 2.25 Mean and variance

The mean of a hypergeometric distributed random variable is

µ = n
a
N

, (2-27)

and the variance is

σ2 = n
a(N − a)

N2
N − n
N − 1

. (2-28)

Example 2.26 Lottery probabilities using the hypergeometric dis-
tribution

A lottery drawing is a good example where the hypergeometric distribution can be
applied. The numbers from 1 to 90 are put in a bowl and randomly drawn without
replacement (i.e. without putting back the number when it has been drawn). Say
that you have the sheet with 8 numbers and want to calculate the probability of
getting all 8 numbers in 25 draws.
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# The probability of getting x numbers of the sheet in 25 drawings

# Number of successes in the population
a = 8
# Size of the population
N = 90
# Number of draws
n = 25
# Plot the pdf, note: parameters names are different in the python-function (here using hypergeom)
plt.bar(np.arange(0,9), stats.hypergeom.pmf(np.arange(0,9), N, a, n), color='black', width=0.1)
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2.3.3 Poisson distribution

The Poisson distribution describes the probability of a given number of events
occurring in a fixed interval if these events occur with a known average rate
and independently of the distance to the last event. Often it is events in a time
interval, but can as well be counts in other intervals, e.g. of distance, area or
volume. In statistics the Poisson distribution is usually applied for analyzing
for example counts of: arrivals, traffic, failures and breakdowns.
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Definition 2.27 Poisson distribution

Let the random variable X be Poisson distributed

X ∼ Po(λ), (2-29)

where λ is the rate (or intensity): the average number of events per interval.
The Poisson pdf describes the probability of x events in an interval

f (x; λ) =
λx

x!
e−λ. (2-30)

Theorem 2.28 Mean and variance

A Poisson distributed random variable X has exactly the rate λ as the mean

µ = λ, (2-31)

and variance

σ2 = λ. (2-32)

Example 2.29

The Poisson distribution is typically used to describe phenomena such as:

• the number radioactive particle decays per time interval, i.e. the number of
clicks per time interval of a Geiger counter

• calls to a call center per time interval (λ does vary over the day)

• number of mutations in a given stretch of DNA after a certain amount of radi-
ation

• goals scored in a soccer match

One important feature is that the rate can be scaled, such that probabilities of
occurrences in other interval lengths can be calculated. Usually the rate is de-
noted with the interval length, for example the hourly rate is denoted as λhour
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and can be scaled to the minutely rate by

λminute =
λhour

60
, (2-33)

such the probabilities of x events per minute can be calculated with the Poisson
pdf with rate λminute.

Example 2.30 Rate scaling

You are enjoying a soccer match. Assuming that the scoring of goals per match in
the league is Poisson distributed and on average 3.4 goals are scored per match.
Calculate the probability that no goals will be scored while you leave the match for
10 minutes.

Let λ90minutes = 3.4 be goals per match and scale this to the 10 minute rate by

λ10minutes =
λ90minutes

9
=

3.4
9

. (2-34)

Let X be the number of goals in 10 minute intervals and use this to calculate the
probability of no events a 10 minute interval by

P(X = 0) = f (0, λ10minutes) ≈ 0.685, (2-35)

which was found with the following code

# Probability of no goals in 10 minutes

# The Poisson pdf (using poisson.pmf() function)
stats.poisson.pmf(0, 3.4/9)

np.float64(0.6853827910309876)
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Example 2.31 Poisson distributed random variable

Simulate a Poisson distributed random variable to see the Poisson distribution

# Simulate a Poisson random variable

# The mean rate of events per interval
lamb = 4
# Number of realizations
n = 1000
# Simulate
x = stats.poisson.rvs(lamb, size=n)
# Plot the empirical pdf
values, counts = np.unique(x, return_counts=True)
plt.bar(values, counts/n, color='black', width=0.2, label='Empirical pdf')
# Add the pdf to the plot
plt.bar(values, stats.poisson.pmf(values, lamb), color='red', width=0.05, label='pdf')
plt.show()

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Empirical pdf
pdf



Chapter 2 2.4 CONTINUOUS RANDOM VARIABLES 66

2.4 Continuous random variables

If an outcome of an experiment takes a continuous value, for example: a dis-
tance, a temperature, a weight, etc., then it is represented by a continuous ran-
dom variable.

Definition 2.32 Density and probabilities

The pdf of a continuous random variable X is a non-negative function for all
possible outcomes

f (x) ≥ 0 for all x, (2-36)

and has an area below the function of one
∫ ∞

−∞
f (x)dx = 1. (2-37)

It defines the probability of observing an outcome in the range from a to b
by

P(a < X ≤ b) =
∫ b

a
f (x)dx. (2-38)

For the discrete case the probability of observing an outcome x is equal to the
pdf of x, but this is not the case for a continuous random variable, where

P(X = x) = P(x < X ≤ x) =
∫ x

x
f (u)du = 0, (2-39)

i.e. the probability for a continuous random variable to be realized at a single
number P(X = x) is zero.

The plot in Figure 2.1 shows how the area below the pdf represents the proba-
bility of observing an outcome in a range. Note that the normal distribution is
used here for the examples, it is introduced in Section 2.5.2.
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Figure 2.1: The probability of observing the outcome of X in the range between
a and b is the area below the pdf spanning the range, as illustrated with the
coloured area.

Definition 2.33 Distribution

The cdf of a continuous variable is defined by

F(x) = P(X ≤ x) =
∫ x

−∞
f (u)du, (2-40)

and has the properties (in both the discrete and continuous case): the cdf is
non-decreasing and

lim
x→−∞

F(x) = 0 and lim
x→∞

F(x) = 1. (2-41)

The relation between the cdf and the pdf is

P(a < X ≤ b) = F(b)− F(a) =
∫ b

a
f (x)dx, (2-42)

as illustrated in Figures 2.1 and 2.2.

Also as the cdf is defined as the integral of the pdf, the pdf becomes the derivative
of the cdf

f (x) =
d

dx
F(x) (2-43)
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Figure 2.2: The probability of observing the outcome of X in the range between
a and b is the distance between F(a) and F(b).

2.4.1 Mean and Variance

Definition 2.34 Mean and variance

For a continuous random variable the mean or expected value is

µ = E(X) =
∫ ∞

−∞
x f (x)dx, (2-44)

hence similar as for the discrete case the outcome is weighted with the pdf.
The variance is

σ2 = E[(X− µ)2] =
∫ ∞

−∞
(x− µ)2 f (x)dx, (2-45)

The differences between the discrete and the continuous case can be summed
up in two points:

• In the continuous case integrals are used, in the discrete case sums are
used.

• In the continuous case the probability of observing a single value is always
zero. In the discrete case it can be positive or zero.



Chapter 2 2.5 CONTINUOUS DISTRIBUTIONS 69

2.5 Continuous distributions

2.5.1 Uniform distribution

A random variable following the uniform distribution has equal density at any
value within a defined range.

Definition 2.35 Uniform distribution

Let X be a uniform distributed random variable

X ∼ U(α, β), (2-46)

where α and β defines the range of possible outcomes. It has the pdf

f (x) =

{
1

β−α for x ∈ [α, β]

0 otherwise
. (2-47)

The uniform cdf is

F(x) =





0 for x < α
x−α
β−α for x ∈ [α, β)

1 for x ≥ β

. (2-48)

In Figure 2.3 the uniform pdf and cdf are plotted.

Theorem 2.36 Mean and variance of the uniform distribution

The mean of a uniform distributed random variable X is

µ =
1
2
(α + β), (2-49)

and the variance is

σ2 =
1

12
(β− α)2. (2-50)
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Figure 2.3: The uniform distribution pdf and cdf.

2.5.2 Normal distribution

The most famous continuous distribution is the normal distribution for many
reasons. Often it is also called the Gaussian distribution. The normal distribu-
tion appears naturally for many phenomena and is therefore used in extremely
many applications, which will be apparent in later chapters of the book.

Definition 2.37 Normal distribution

Let X be a normal distributed random variable

X ∼ N(µ, σ2), (2-51)

where µ is the mean and σ2 is the variance (remember that the standard
deviation is σ). Note that the two parameters are actually the mean and
variance of X.
It follows the normal pdf

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2-52)

and the normal cdf

F(x) =
1

σ
√

2π

∫ x

−∞
e−

(u−µ)2

2σ2 du. (2-53)



Chapter 2 2.5 CONTINUOUS DISTRIBUTIONS 71

Theorem 2.38 Mean and variance

The mean of a Normal distributed random variable is

µ, (2-54)

and the variance is

σ2. (2-55)

Hence simply the two parameters defining the distribution.

Example 2.39 The normal pdf

Example: Let us play with the normal pdf

# Play with the normal distribution

# The mean and standard deviation
muX = 0
sigmaX = 1
# A sequence of x values
xSeq = np.arange(-6, 6.1, 0.1)
##
pdfX = 1/(sigmaX*np.sqrt(2*np.pi)) * np.exp(-(xSeq-muX)**2/(2*sigmaX**2))
# Plot the pdf
plt.plot(xSeq, pdfX)
plt.ylabel('f(x)')

6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

f(x
)
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Try with different values of the mean and standard deviation. Describe how
this change the position and spread of the pdf?

Theorem 2.40 Linear combinations of normal random variables

Let X1, . . . , Xn be independent normal random variables, then any linear
combination of X1, . . . , Xn will follow a normal distribution, with mean and
variance given in Theorem 2.56.

Use the mean and variance identities introduced in Section 2.7 to find the mean
and variance of the linear combination as exemplified here:

Example 2.41

Consider two normal distributed random variables

X1 ∼ N(µX1 , σ2
X1
) and X2 ∼ N(µX2 , σ2

X2
). (2-56)

The difference

Y = X1 − X2, (2-57)

is normal distributed

Y ∼ N(µY, σ2
Y), (2-58)

where the mean is

µY = µX1 − µX2 , (2-59)

and

σ2
Y = σ2

X1
+ σ2

X2
, (2-60)

where the mean and variance identities introduced in Section 2.7 have been used.

Standard normal distribution
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Definition 2.42 Standard normal distribution

The standard normal distribution is the normal distribution with zero mean
and unit variance

Z ∼ N(0, 1), (2-61)

where Z is the standardized normal random variable.

Historically before the widespread use of computers the standardized random
variables were used a lot, since it was not possible to easily evaluate the pdf and
cdf, instead they were looked up in tables for the standardized distributions.
This was smart since transformation into standardized distributions requires
only a few simple operations.

Theorem 2.43 Transformation to the standardized normal random
variable

A normal distributed random variable X can be transformed into a stan-
dardized normal random variable by

Z =
X− µ

σ
. (2-62)

Example 2.44 Quantiles in the standard normal distribution

The most used quantiles (or percentiles) in the standard normal distribution are

Percentile 1% 2.5% 5% 25% 75% 95% 97.5% 99%
Quantile 0.01 0.025 0.05 0.25 0.75 0.95 0.975 0.99
Value -2.33 -1.96 -1.64 -0.67 0.67 1.64 1.96 2.33

Note that the values can be considered as standard deviations (i.e. for Z the stan-
dardized normal then σZ = 1), which holds for any normal distribution.

The most used quantiles are marked on the plot
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Note that the units on the x-axis is in standard deviations.

Normal pdf details

In order to get insight into how the normal distribution is formed consider the
following steps. In Figure 2.4 the result of each step is plotted:

1. Take the distance to the mean: x− µ

2. Square the distance: (x− µ)2

3. Make it negative and scale it: −(x−µ)2

(2σ2)

4. Take the exponential: e
−(x−µ)2

(2σ2)

5. Finally, scale it to have an area of one: 1
σ
√

2π
e
−(x−µ)2

(2σ2)
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Figure 2.4: The steps involved in calculating the normal distribution pdf.

Example 2.45 Python functions for the normal distribution

In Python functions to generate values from many distributions are implemented.
For the normal distribution the following functions are available:
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# Do it for a sequence of x values
xSeq = np.arange(-3, 4)
# The pdf
stats.norm.pdf(xSeq, 0, 1)

array([0.004, 0.054, 0.242, 0.399, 0.242, 0.054, 0.004])

# The cdf
stats.norm.cdf(xSeq, 0, 1)

array([0.001, 0.023, 0.159, 0.500, 0.841, 0.977, 0.999])

# The quantiles
stats.norm.ppf([0.01,0.025,0.05,0.5,0.95,0.975,0.99], 0, 1)

array([-2.326, -1.960, -1.645, 0.000, 1.645, 1.960, 2.326])

# Generate random normal distributed realizations
stats.norm.rvs(0, 1, size=10)

array([-1.043, 0.050, -0.592, -0.840, 0.460, 0.150, 0.021, -1.221,
-0.638, -1.024])

# Calculate the probability that the outcome of X is between a and b
a = 0.2
b = 0.8
stats.norm.cdf(b, 0, 1) - stats.norm.cdf(a, 0, 1)

np.float64(0.20888489197750038)

# See more details in online documentation for scipy.stats.norm

Use the functions to make a plot of the normal pdf with marks of the
2.5%, 5%, 95%, 97.5% quantiles.
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Make a plot of the normal pdf and a histogram (empirical pdf) of 100 simu-
lated realizations.

2.5.3 Log-Normal distribution

If a random variable is log-normal distributed then its logarithm is normally
distributed.

Definition 2.46 Log-Normal distribution

A log-normal distributed random variable

X ∼ LN(α, β2), (2-63)

where α is the mean and β2 is the variance of the normal distribution ob-
tained when taking the natural logarithm to X.
The log-normal pdf is

f (x) =
1

x
√

2πβ
e
− (ln x−α)2

2β2 . (2-64)

Theorem 2.47 Mean and variance of log-normal distribution

Mean of the log-normal distribution

µ = eα+β2/2, (2-65)

and variance

σ2 = e2α+β2
(eβ2 − 1). (2-66)

The log-normal distribution occurs in many fields, in particular: biology, fi-
nance and many technical applications.
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2.5.4 Exponential distribution

The usual application of the exponential distribution is for describing the length
(usually time) between events which, when counted, follows a Poisson distri-
bution, see Section 2.3.3. Hence the length between events which occur contin-
uously and independently at a constant average rate.

Definition 2.48 Exponential distribution

Let X be an exponential distributed random variable

X ∼ Exp(λ), (2-67)

where λ is the average rate of events.

It follows the exponential pdf

f (x) =

{
λe−λx for x ≥ 0
0 for x < 0

. (2-68)

Theorem 2.49 Mean and variance of exponential distribution

Mean of an exponential distribution is

µ =
1
λ

, (2-69)

and the variance is

σ2 =
1

λ2 . (2-70)
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Example 2.50 Exponential distributed time intervals

Simulate a so-called Poisson process, which has exponential distributed time inter-
val between events

# Simulate exponential waiting times

# The rate parameter: events per time
lamb = 4
# Number of realizations
n = 1000
# Simulate
wait_times = stats.expon.rvs(loc=0, scale=1/lamb, size=n)
# The empirical pdf
plt.hist(wait_times, density=True)
# Add the pdf to the plot
x = np.arange(0,1.4,0.01)
plt.plot(x, stats.expon.pdf(x, loc=0, scale=1/lamb), color='red')
plt.show()

0.0 0.5 1.0 1.5
0

1

2

3

4

Furthermore check that by counting the events in fixed length intervals that they
follow a Poisson distribution.
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# Check the relation to the Poisson distribution
# by counting the events in each interval

# Sum up to get the running time
running_times = np.cumsum(wait_times)
# Use the hist function to count in intervals between the breaks,
# here 0,1,2,...
counts, bin_edges = np.histogram(running_times, bins=np.arange(np.ceil(running_times.max())))
plt.bar(np.arange(len(np.bincount(counts))), np.bincount(counts)/len(counts), color='black', width=0.3, label='Empirical pdf')

# Add the Poisson pdf to the plot
poisson_pmf = stats.poisson.pmf(np.arange(0, 16), lamb)
plt.bar(np.arange(0, 16), poisson_pmf, color='red', width=0.1, label='pdf')
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Figure 2.5: Exponential distributed time intervals between events forms a so-
called Poisson process.

2.6 Simulation of random variables

The basic concept of simulation was introduced in Section 2.2.1 and we have al-
ready applied the in-built functions in Python for generating random numbers
from any implemented distribution, see how in Section 2.3.1. In this section it
is explained how realizations of a random variable can be generated from any
probability distribution – it is the same technique for both discrete and contin-
uous distributions.

Basically, a computer obviously cannot create a result/number, which is ran-
dom. A computer can give an output as a function of an input. (Pseudo) ran-
dom numbers from a computer are generated from a specially designed algo-
rithm - called a random number generator, which once started can make the
number xi+1 from the number xi. The algorithm is designed in such a way that
when looking at a sequence of these values, in practice one cannot tell the dif-
ference between them and a sequence of real random numbers. The algorithm
needs a start input, called the “seed”, as explained above Remark 2.12. Usually,
you can manage just fine without having to worry about the seed issue since
the program itself finds out how to handle it appropriately. Only if you want to
be able to recreate exactly the same results you need to set seed value.

Actually, a basic random number generator typically generates (pseudo) ran-
dom numbers between 0 and 1 in the sense that numbers in practice follow the
uniform distribution on the interval 0 to 1, see Section 2.35. Actually, there is a
simple way how to come from the uniform distribution to any kind of distribu-
tion:
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Theorem 2.51

If U ∼ Uniform(0, 1) and F is a distribution function for any probability
distribution, then F−1(U) follow the distribution given by F

Recall, that the distribution function F in Python is given by the ’.cdf()’ ver-
sions of the distributions, while F−1 is given by the ’.ppf()’ versions.

Example 2.52 Random numbers in Python

We can generate 100 normally distributed N(2, 32) numbers similarly the following
two ways:

# Generate 100 normal distributed values
random_numbers = stats.norm.rvs(loc=2, scale=3, size=100)
# Similarly, generate 100 uniform distributed values from 0 to 1 and
# # put them through the inverse normal cdf
uniform_random_numbers = stats.uniform.rvs(loc=0, scale=1, size=100)
stats.norm.ppf(uniform_random_numbers, loc=2, scale=3)

Example 2.53 Simulating the exponential distribution

Consider the exponential distribution with λ = 1/β = 1/2, that is, with density
function

f (x) = λe−λx,

for x > 0 and 0 otherwise. The distribution function is

F(x) =
∫ x

0
f (t)dt = 1− e−0.5x.

The inverse of this distribution function can be found by solving

u = 1− e−0.5x ⇔ x = −2 log(1− u).

So if random numbers U ∼ Uniform(0, 1) then −2 log(1−U) follows the exponen-
tial distribution with λ = 1/2 (and β = 2). We confirm this in the code given below:
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# Three equivalent ways of simulating the exponential distribution
# with lambda=1/2
re1 = -2*np.log(1-stats.uniform.rvs(loc=0, scale=1, size=10000))
re2 = stats.expon.ppf(stats.uniform.rvs(loc=0, scale=1, size=10000), loc=0, scale=2)
re3 = stats.expon.rvs(loc=0, scale=2, size=10000)

# Check the means and variances of each
print(re1.mean(), re2.mean(), re2.mean())

2.0039553521283056 1.9948804494574823 1.9948804494574823

print(re1.var(), re2.var(), re2.var())

3.89520722053301 3.7967058951210935 3.7967058951210935

This can be illustrated by plotting the distribution function (cdf) for the exponential
distribution with λ = 1/2 and 5 random outcomes
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But since Python has already done all this for us, we do not really need this
as long as we only use distributions that have already been implemented in
Python.
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2.7 Identities for the mean and variance

Rules for calculation of the mean and variance of linear combinations of in-
dependent random variables are introduced here. They are valid for both the
discrete and continuous case.

Theorem 2.54 Mean and variance of linear functions

Let Y = aX + b then

E(Y) = E(aX + b) = a E(X) + b, (2-71)

and

V(Y) = V(aX + b) = a2 V(X). (2-72)

Random variables are often scaled (i.e. aX) for example when shifting units:

Example 2.55

The mean of a bike shops sale is 100 bikes per month and varies with a standard
deviation of 15. They earn 200 Euros per bike. What is the mean and standard
deviation of their earnings per month?

Let X be the number of bikes sold per month. On average they sell µX = 100 bikes
per month and it varies with a variance of σ2

X = 225. The shops monthly earnings

Y = 200X,

has then a mean and standard deviation of

µY = E(Y) = E(200X) = 200 E(X) = 200 · 100 = 20000 Euro/month,

σY =
√

V(Y) =
√

V(200X) =
√

2002 V(X) =
√

40000 · 225 = 3000 Euro/month.
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Theorem 2.56 Mean and variance of linear combinations

The mean of a linear combination of independent random variables is

E(a1X1 + a2X2 + · · ·+ anXn) = a1 E(X1) + a2 E(X2) + · · ·+ an E(Xn),
(2-73)

and the variance

V(a1X1 + a2X2 + · · ·+ anXn) = a2
1 V(X1) + a2

2 V(X2) + · · ·+ a2
n V(Xn).

(2-74)

Example 2.57

Lets take a dice example to emphasize an important point. Let Xi represent the
outcome of a roll with a dice with mean µX and standard deviation σX.

Now, consider a scaling of a single roll with a dice, say five times

Yscale = 5X1,

then the mean will scale linearly

E(Yscale) = E(5X1) = 5 E(X1) = 5 µX,

and the standard deviation also scales linearly

σ2
Yscale = V(5X1) = 52 V(X1) = 52 σ2

X ⇔ σYscale = 5 σX.

Whereas for a sum of five rolls

Ysum = X1 + X2 + X3 + X4 + X5,

the mean will similarly scale linearly

E(Ysum) = E(X1 + X2 + X3 + X4 + X5)

= E(X1) + E(X2) + E(X3) + E(X4) + E(X5)

= 5 µX,

however the standard deviation will increase only with the square root

σ2
Ysum = V(X1 + X2 + X3 + X4 + X5)

= V(X1) + V(X2) + V(X3) + V(X4) + V(X5)

= 5 σ2
X ⇔

σYsum =
√

5 σX.
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This is simply because when applying the sum to many random outcomes, then
the high and low outcomes will even out each other, such that the variance will be
smaller for a sum than for a scaling.
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2.8 Covariance and correlation

In this chapter we have discussed mean and variance (or standard deviation),
and the relation to the sample mean and sample variance, see Section 2.2.2. In
Chapter 1 Section 1.4.3 we discussed the sample covariance and sample correla-
tion, these two measures also have theoretical justification, namely covariance
and correlation, which we will discuss in this section. We start by the definition
of covariance.

Definition 2.58 Covariance

Let X and Y be two random variables, then the covariance between X and
Y, is

Cov(X, Y) = E[(X− E[X])(Y− E[Y])] . (2-75)

Remark 2.59

It follows immediately from the definition that Cov(X, X) = V(X) and
Cov(X, Y) = Cov(Y, X).

An important concept in statistics is independence (see Section 2.9 for a formal
definition). We often assume that realizations (random variables) are indepen-
dent. If two random variables are independent then their covariance will be
zero, the reverse is however not necessarily true (see also the discussion on
sample correlation in Section 1.4.3).

The following calculation rule apply to covariance between two random vari-
ables X and Y:

Theorem 2.60 Covariance between linear combinations

Let X and Y be two random variables, then

Cov(a0 + a1X + a2Y, b0 + b1X + b2Y) = a1b1 V(X) + a2b2 V(Y) + (a1b2 + a2b1)Cov(X, Y).
(2-76)
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Proof

Let Z1 = a0 + a1X + a2Y and Z2 = b0 + b1X + b2Y then

Cov(Z1, Z2) = E[(a1(X− E[X]) + a2(Y− E[Y]))(b1(X− E[X]) + b2(Y− E[Y]))]

= E[a1(X− E[X])b1(X− E[X])] + E[a1(X− E[X])b2(Y− E[Y])]+

E[a2(Y− E[Y])b1(X− E[X])] + E[a2(Y− E[Y])b2(Y− E[Y])]

= a1b1 V(X) + a2b2 V(Y) + (a1b2 + a2b2)Cov(X, Y). (2-77)

�

Example 2.61

Let X ∼ N(3, 22) and Y ∼ N(2, 1) and the covariance between X and Y given by
Cov(X, Y) = 1. What is the variance of the random variable Z = 2X−Y?

V(Z) = Cov[2X−Y, 2X−Y] = 22 V(X) + V(Y)− 4 Cov(X, Y)

= 2222 + 1− 4 = 13.

We have already seen in Section 1.4.3 that the sample correlation measures the
observed degree of linear dependence between two random variables – calcu-
lated from samples observed on the same observational unit e.g. height and
weight of people. The theoretical counterpart is the correlation between two
random variables – the true linear dependence between the two variables:

Definition 2.62 Correlation

Let X and Y be two random variables with V(X) = σ2
x , V(Y) = σ2

y , and
Cov(X, Y) = σxy, then the correlation between X and Y is

ρxy =
σxy

σxσy
. (2-78)

Remark 2.63

The correlation is a number between -1 and 1.
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Example 2.64

Let X ∼ N(1, 22) and ε ∼ N(0, 0.52) be independent random variables, find the
correlation between X and Z = X + ε.

The variance of Z is

V(Z) = V(X + ε) = V(X) + V(ε) = 4 + 0.25 = 4.25.

The covariance between X and Z is

Cov(X, Z) = Cov(X, X + ε) = V(X) = 4,

and hence

ρxz =
4√

4.25 · 4
= 0.97.
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2.9 Independence of random variables

In statistics the concept of independence is very important, and in order to
give a formal definition of independence we will need the definition of two-
dimensional random variables. The probability density function of a two-dimensional
discrete random variable, called the joint probability density function, is,

Definition 2.65 Joint pdf of two-dimensional discrete random vari-
ables

The pdf of a two-dimensional discrete random variable [X, Y] is

f (x, y) = P(X = x, Y = y), (2-79)

with the properties

f (x, y) ≥ 0 for all (x, y), (2-80)

∑
all x

∑
all y

f (x, y) = 1. (2-81)

Remark 2.66

P(X = x, Y = y) should be read: the probability of X = x and Y = y.

Example 2.67

Imagine two throws with an fair coin: the possible outcome of each throw is either
head or tail, which will be given the values 0 and 1 respectively. The complete set of
outcomes is (0,0), (0,1), (1,0), and (1,1) each with probability 1/4. And hence the pdf
is

f (x, y) =
1
4

; x = {0, 1}, y = {0, 1},

further we see that
1

∑
x=0

1

∑
y=0

f (x, y) =
1

∑
x=0

( f (x, 0) + f (x, 1)) = f (0, 0) + f (0, 1) + f (1, 0) + f (1, 1)

= 1.
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The formal definition of independence for a two dimensional discrete random
variable is:

Definition 2.68 Independence of discrete random variables

Two discrete random variables X and Y are said to be independent if and
only if

P(X = x, Y = y) = P(X = x)P(Y = y). (2-82)

Example 2.69

Example 2.67 is an example of two independent random variables, to see this write
the probabilities

P(X = 0) =
1

∑
y=0

f (0, y) =
1
2

,

P(X = 1) =
1

∑
y=0

f (1, y) =
1
2

.

similarly P(Y = 0) = 1
2 and P(Y = 1) = 1

2 , now we see that P(X = x)P(Y = y) = 1
4

for all possible x and y, and hence

P(X = x)P(Y = y) = P(X = x, Y = y) =
1
4

.

Example 2.70

Now imagine that for the second throw we don’t see the outcome of Y, but only
observe the sum of X and Y, denote it by

Z = X + Y.

Lets find out if X and Z are independent. In this case the for all outcomes (0, 0),
(0, 1), (1, 1), (1, 2) the joint pdf is

P(X = 0, Z = 0) = P(X = 0, Z = 1) = P(X = 1, Z = 1) = P(X = 1, Z = 2) =
1
4

.

The pdf for each variable is: for X

P(X = 0) = P(X = 1) =
1
2

,
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and for Z

P(Z = 0) = P(Z = 2) =
1
4

and P(Z = 1) =
1
2

,

thus for example for the particular outcome (0, 0)

P(X = 0)P(Z = 0) =
1
2
· 1

4
=

1
8
6= 1

4
= P(X = 0, Z = 0),

the pdf s are not equal and hence we see that X and Z are not independent.

Remark 2.71

In the example above it is quite clear that X and Z cannot be independent.
In real applications we do not know exactly how the outcomes are realized
and therefore we will need to assume independence (or test it).

To be able to define independence of continuous random variables, we will need
the pdf of a two-dimensional random variable:

Definition 2.72 Pdf of two dimensional continous random vari-
ables

The pdf of a two-dimensional continous random variable [X, Y] is a function
f (x, y) from R2 into R+ with the properties

f (x, y) ≥ 0 for all (x, y), (2-83)
∫ ∫

f (x, y)dxdy = 1. (2-84)

Just as for one-dimensional random variables the probability interpretation is
in form of integrals

P
(
(X, Y) ∈ A

)
=
∫

A
f (x, y)dxdy, (2-85)

where A is an area.



Chapter 2 2.9 INDEPENDENCE OF RANDOM VARIABLES 93

Example 2.73 Bivariate normal distribution

The most important two-dimensional distribution is the bivariate normal distribu-
tion

f (x1, x2) =
1

2π
√
|Σ|

e−
1
2 (x−µ)TΣ−1(x−µ)

=
1

2π
√

σ11σ22 − σ2
12

e
− σ22(x1−µ1)

2+σ11(x2−µ2)
2−2σ12(x1−µ1)(x2−µ2)

2(σ11σ22−σ2
12) ,

where x = (x1, x2), and µ = [E(X1), E(X2)], and Σ is the so-called variance-
covariance matrix with elements (Σ)ij = σij = Cov(Xi, Xj), note that σ12 = σ21,
| · | is the determinant, and Σ−1 is the inverse of Σ.

Definition 2.74 Independence of continous random variables

Two continous random variables X and Y are said to be independent if

f (x, y) = f (x) f (y). (2-86)

We list here some properties of independent random variables.

Theorem 2.75 Properties of independent random variables

If X and Y are independent then

E(XY) = E(X)E(Y), (2-87)

and

Cov(X, Y) = 0. (2-88)

Let X1, . . . , Xn be independent and identically distributed random variables
then

Cov(X, Xi − X) = 0. (2-89)
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Proof

E(XY) =
∫ ∫

xy f (x, y)dxdy =
∫ ∫

xy f (x) f (y)dxdy

=
∫

x f (x)dx
∫

y f (y)dy = E(X)E(Y)
(2-90)

Cov(X, Y) = E[(X− E(X))(Y− E(Y))]

= E[XY]− E[E(X)Y]− E[X E(Y)] + E(X)E(Y)

= 0.

(2-91)

Cov(X, Xi − X) = Cov(X, Xi)−Cov(X, X)

=
1
n

σ2 − 1
n2 Cov

(
∑ Xi, ∑ Xi

)

=
1
n

σ2 − 1
n2 nσ2 = 0.

(2-92)

�

Remark 2.76

Note that Cov(X, Y) = 0 does not imply that X and Y are independent.
However, if X and Y follow a bivariate normal distribution, then if X and Y
are uncorrelated then they are also independent.
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2.10 Functions of normal random variables

This section will cover some important functions of a normal random variable.
In general the question of how an arbitrary function of a random variable is dis-
tributed cannot be answered on closed form (ı.e. directly and exactly calculated)
– for answering such questions we must use simulation as a tool, as covered de-
tails in Chapter 4. We have already discussed simulation as a learning tool,
which will also be used in this section.

The simplest function we can think of is a linear combination of normal random
variables, which we from Theorem 2.40 know will follow a normal distribution.
The mean and variance of this normal distribution can be calculated using the
identities given in Theorem 2.56.

Remark 2.77

Note that combining Theorems 2.40 and 2.75, and Remark 2.76 imply that X
and Xi − X are independent.

In addition to the result given above we will cover three additional distribu-
tions: χ2-distribution, t-distribution and the F-distribution, which are all very
important for the statistical inference covered in the following chapters.
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2.10.1 The χ2-distribution

The χ2-distribution (chi-square) is defined by:

Definition 2.78

Let X be χ2 distributed, then its pdf is

f (x) =
1

2
ν
2 Γ
(

ν
2

) x
ν
2−1e−

x
2 ; x ≥ 0, (2-93)

where Γ
(

ν
2

)
is the Γ-function and ν is the degrees of freedom.

An alternative definition (here formulated as a theorem) of the χ2-distribution
is:

Theorem 2.79

Let Z1, . . . , Zν be independent random variables following the standard nor-
mal distribution, then

ν

∑
i=1

Z2
i ∼ χ2(ν). (2-94)

We will omit the proof of the theorem as it requires more probabilty calculus
than covered here. Rather a small example that illustrates how the theorem can
be checked by simulation:
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Example 2.80 simulation of χ2-distribution

# Simulate 10 realizations from a standard normal distributed variable
n = 10
stats.norm.rvs(loc=0, scale=1, size=n)
# Now repeat this 200 times and calculate the sum of squares each time
# Note: the use of the function replicate: it repeats the
# expression in the 2nd argument k times, see ?replicate
x = [np.sum(stats.norm.rvs(loc=0, scale=1, size=n)**2) for _ in range(200)]
x = np.array(x)
# Plot the epdf of the sums and compare to the theoretical chisquare pdf
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.hist(x, density=True, label='epdf')
ax1.plot(range(0,31), stats.chi2.pdf(range(0,31), df=n), color="red", label='pdf')
# and the ecdf compared to the cdf
stats.ecdf(x).cdf.plot(ax2, label='ecdf')
ax2.plot(range(0,31), stats.chi2.cdf(range(0,31), df=n), color="red", label='cdf')
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.
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Theorem 2.81

Given a sample of size n from the normal distributed random variables Xi
with variance σ2, then the sample variance S2 (viewed as random variable)
can be transformed into

χ2 =
(n− 1)S2

σ2 , (2-95)

which follows the χ2-distribution with degrees of freedom ν = n− 1.

Proof

Start by rewriting the expression

(n− 1)S2

σ2 =
n

∑
i=1

(
Xi − X

σ

)2

=
n

∑
i=1

(
Xi − µ + µ− X

σ

)2

=
n

∑
i=1

(
Xi − µ

σ

)2

+
n

∑
i=1

(
X− µ

σ

)2

− 2
n

∑
i=1

(X− µ)(Xi − µ)

σ2

=
n

∑
i=1

(
Xi − µ

σ

)2

+ n
(

X− µ

σ

)2

− 2n
(

X− µ

σ

)2

=
n

∑
i=1

(
Xi − µ

σ

)2

−
(

X− µ

σ/
√

n

)2

,

(2-96)

we know that Xi−µ
σ ∼ N(0, 1) and X−µ

σ/
√

n ∼ N(0, 1), and hence the left hand side is a

χ2(n) distributed random variable minus a χ2(1) distributed random variable (also
X and S2 are independent, see Theorems 2.75, and 2.40, and Remark 2.76). Hence
the left hand side must be χ2(n− 1).

�

If someone claims that a sample comes from a specific normal distribution (i.e.
Xi ∼ N(µ, σ2), then we can examine probabilities of specific outcomes of the
sample variance. Such calculation will be termed hypethesis test in later chap-
ters.
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Example 2.82 Milk dose machines

A manufacture of machines for dosing milk claims that their machines can dose with
a precision defined by the normal distribution with a standard deviation less than
2% of the dose volume in the operation range. A sample of n = 20 observations was
taken to check if the precision was as claimed. The sample standard deviation was
calculated to s = 0.03.

Hence the claim is that σ ≤ 0.02, thus we want to answer the question: if σ = 0.02
(i.e. the upper limit of the claim), what is then the probability of getting the sampling
deviation s ≥ 0.03?

# Chi-square milk dosing precision
# The sample size
n = 20
# The claimed deviation
sigma = 0.02
# The observed sample standard deviation
s = 0.03
# Calculate the chi-square statistic
chiSq = (n-1)*s**2 / sigma**2
# Use the cdf to calculate the probability of getting the observed
# sample standard deviation or higher
1 - stats.chi2.cdf(chiSq, df=n-1)

np.float64(0.0014022691601097703)

It seems very unlikely that the standard deviation is below 0.02 since the probability
of obtaining the observed sample standard deviation under this condition is very
small. The probability we just found will be termed a p-value in later chapters - the
p-value a very fundamental in testing of hypothesis.

The probability calculated in the above example will be called the p-value in
later chapters and it is a very fundamental concept in statistics.

Theorem 2.83 Mean and variance

Let X ∼ χ2(ν) then the mean and variance of X is

E(X) = ν; V(X) = 2ν. (2-97)
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We will omit the proof of this theorem, but it is easily checked by a symbolic
calculation software (like e.g. Maple).

Example 2.84

We want to calculate the expected value of the sample variance (S2) based on n
observations with Xi ∼ N(µ, σ2). We have already seen that n−1

σ2 S2 ∼ χ2(n− 1) and
we can therefore write

E(S2) =
σ2

n− 1
n− 1

σ2 E
(
S2)

=
σ2

n− 1
E
(

n− 1
σ2 S2

)

=
σ2

n− 1
(n− 1) = σ2,

and we say that S2 is a central estimator for σ2 (the term estimator is introduced in
Section 3.1.3). We can also find the variance of the estimator

V(S2) =

(
σ2

n− 1

)2

V
(

n− 1
σ2 S2

)

=
σ4

(n− 1)2 2(n− 1) = 2
σ4

n− 1
.

Example 2.85 Pooled variance

Suppose now that we have two different samples (not yet realized) X1, . . . , Xn1 and
Y1, . . . , Yn2 with Xi ∼ N(µ1, σ2) and Yi ∼ N(µ2, σ2) (both i.i.d.). Let S2

1 be the sample
variance based on the X’s and S2

2 be the sample variance based on the Y’s. Now both
S2

1 and S2
2 will be central estimators for σ2, and so will any weighted average of the

type

S2 = aS2
1 + (1− a)S2

2; a ∈ [0, 1].

Now we would like to choose a such that the variance of S2 is as small as possible,
and hence we calculate the variance of S2

V(S2) = a22
σ4

n1 − 1
+ (1− a)22

σ4

n2 − 1

= 2σ4
(

a2 1
n1 − 1

+ (1− a)2 1
n2 − 1

)
.
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In order to find the minimum we differentiate with respect to a

∂ V(S2)

∂a
= 2σ4

(
2a

1
n1 − 1

− 2(1− a)
1

n2 − 1

)

= 4σ4
(

a
(

1
n1 − 1

+
1

n2 − 1

)
− 1

n2 − 1

)

= 4σ4
(

a
n1 + n2 − 2

(n1 − 1)(n2 − 1)
− 1

n2 − 1

)
,

which is zero for

a =
n1 − 1

n1 + n2 − 2
.

In later chapters we will refer to this choice of a as the pooled variance (S2
p), inserting

in (2-98) gives

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2
n1 + n2 − 2

.

Note that S2
p is a weighted (proportional to the number of observations) average

of the sample variances. It can also be shown (you are invited to do this) that
n1+n2−2

σ2 S2
p ∼ χ2(n1 + n2 − 2). Further, note that the assumption of equal variance in

the two samples is crucial in the calculations above.

2.10.2 The t-distribution

The t-distribution is the sampling distribution of the sample mean standardized
with the sample variation. It is valid for all sample sizes, however for larger
sample sizes (n > 30) the difference between the t-distribution and the normal
distribution is very small. Hence for larger sample sizes the normal distribution
is often applied.

Definition 2.86

The t-distribution pdf is

fT(t) =
Γ( ν+1

2 )√
νπ Γ( ν

2)

(
1 + t2

ν

)− ν+1
2 , (2-98)

where ν is the degrees of freedom and Γ() is the Gamma function.
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The relation between normal random variables and χ2-distributed random vari-
ables are given in the following theo:rem

Theorem 2.87

Let Z ∼ N(0, 1) and Y ∼ χ2(ν), then

X =
Z√
Y/ν

∼ t(ν). (2-99)

We will not prove this theorem, but show by an example how this can be illus-
trated by simulation:

Example 2.88 Relation between normal and χ2

# Set simulate parameters
nu = 8; k = 200
# Generate the simulated realizations
z = stats.norm.rvs(size=k)
y = stats.chi2.rvs(size=k, df=nu)
x = z/np.sqrt(y/nu)
# Plot
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.hist(x, density=True, label='epdf')
ax1.plot(range(-4,5), stats.t.pdf(range(-4,5), df=nu), color="red", label='pdf')
stats.ecdf(x).cdf.plot(ax2, label='ecdf', linewidth=3)
ax2.plot(range(-4,5), stats.t.cdf(range(-4,5), df=nu), color="red", label='cdf')
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

The t-distribution arises when a sample is taken of a normal distributed random
variable, then the sample mean standardized with the sample variance follows
the t-distribution.

Theorem 2.89

Given a sample of normal distributed random variables X1, . . . , Xn, then the
random variable

T =
X− µ

S/
√

n
∼ t(n− 1), (2-100)

follows the t-distribution, where X is the sample mean, µ is the mean of X,
n is the sample size and S is the sample standard deviation.
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Proof

Note that X−µ

σ/
√

n ∼ N(0, 1) and (n−1)S2

σ2 ∼ χ2(n− 1) which inserted in Equation (2.87)
gives

T =

X−µ

σ/
√

n√
(n−1)S2

σ2(n−1)

=

X−µ

1/
√

n√
S2

=
X− µ

S/
√

n
∼ t(n− 1).

(2-101)

�

We could also verify this by simulation:

Example 2.90 Simulation of t-distribution

# Simulate
n = 8; k = 200; mu = 1.0; sigma = 2.0
# Repeat k times the simulation of a normal dist. sample:
# return the values in a (n x k) matrix
x = [stats.norm.rvs(loc=mu, scale=sigma, size=n) for _ in range(k)]
x = np.array(x)
xbar = np.array([np.mean(i) for i in x])
s = np.array([np.std(i) for i in x])
tobs = (xbar - mu)/(s/np.sqrt(n))
# Plot
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.hist(tobs, density=True, label='epdf')
ax1.plot(np.arange(-4,4.01,0.01), stats.t.pdf(np.arange(-4,4.01,0.01), df=nu), color="red", label='pdf')
stats.ecdf(tobs).cdf.plot(ax2, label='ecdf', linewidth=3)
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

Note that X and S are random variables, since they are the sample mean and
standard deviation of a sample consisting of realizations of X, but the sample is
not taken yet.

Very often samples with only few observations are available. In this case by
assuming normality of the population (i.e. the Xi’s are normal distributed) and
for a some mean µ, the t-distribution can be used to calculate the probability of
obtaining the sample mean in a given range.

Example 2.91 Electric car driving distance

An electric car manufacture claims that their cars can drive on average 400 km on
a full charge at a specified speed. From experience it is known that this full charge
distance, denote it by X, is normal distributed. A test of n = 10 cars was carried out,
which resulted in a sample mean of x̄ = 382 km and a sample deviation of s = 14.

Now we can use the t-distribution to calculate the probability of obtaining this value
of the sample mean or lower, if their claim about the mean is actually true:
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# Calculate the probability of getting the sample mean under the
# conditions that the claim is actually the real mean

# A test of 10 cars was carried out
n = 10
# The claim is that the real mean is 400 km
muX = 400
# From the sample the sample mean was calculated to
xMean = 393
# And the sample deviation was
xSD = 14
# Use the cdf to calculate the probability of obtaining this
# sample mean or a lower value
stats.t.cdf((xMean-muX)/(xSD/np.sqrt(n)), df=n-1, loc=0, scale=1)

np.float64(0.0741523536832797)

If we had the same sample mean and sample deviation, how do you think
changing the number of observations will affect the calculated probability?
Try it out.

The t-distribution converges to the normal distribution as the simple size in-
creases. For small sample sizes it has a higher spread than the normal distribu-
tion. For larger sample sizes with n > 30 observations the difference between
the normal and the t-distribution is very small.
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Example 2.92 t-distribution

Generate plots to see how the t-distribution is shaped compared to the normal dis-
tribution.

# Plot the t-distribution for different sample sizes

# First plot the standard normal distribution
x = np.arange(-5,5,0.1)
plt.plot(stats.norm.pdf(x, loc=0, scale=1), label='Norm')
# Add the t-distribution for 30 observations
plt.plot(stats.t.pdf(x, df=30-1, loc=0, scale=1), label='n=30')
# Add the t-distribution for 15, 5 and 2 observations
plt.plot(stats.t.pdf(x, df=15-1, loc=0, scale=1), label='n=15')
plt.plot(stats.t.pdf(x, df=5-1, loc=0, scale=1), label='n=5')
plt.plot(stats.t.pdf(x, df=2-1, loc=0, scale=1), label='n=2')
# Add a legend
plt.legend()
plt.show()
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How does the number of observations affect the shape of the t-distribution
pdf compared to the normal pdf?



Chapter 2 2.10 FUNCTIONS OF NORMAL RANDOM VARIABLES 108

Theorem 2.93 Mean and variance

Let X ∼ t(ν) then the mean and variance of X is

E(X) = 0; ν > 1, (2-102)

V(X) =
ν

ν− 2
; ν > 2. (2-103)

We will omit the proof of this theorem, but it is easily checked with a symbolic
calculation software (like e.g. Maple).

Remark 2.94

For ν ≤ 1 the expectation (and hence the variance) is not defined (the inte-
gral is not absolutely convergent), and for ν ∈ (1, 2] (1 < ν ≤ 2) the variance
is equal ∞. Note that this does not violate the general definition of probabil-
ity density functions.

2.10.3 The F-distribution

The F-distribution is defined by:

Definition 2.95

The F-distribution pdf is

fF(x) =
1

B
( ν1

2 , ν2
2

)
(

ν1

ν2

) ν1
2

x
ν1
2 −1

(
1 +

ν1

ν2
x
)− ν1+ν2

2

, (2-104)

where ν1 an ν2 are the degrees of freedom and B(·, ·) is the Beta function.

The F-distribution appears as the ratio between two independent χ2-distributed
random variables:
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Theorem 2.96

Let U ∼ χ2(ν1) and V ∼ χ2(ν2), be independent then

F =
U/ν1

V/ν2
∼ F(ν1, ν2). (2-105)

Again we will omit the proof of the theorem and rather show how it can be
visualized by simulation:

Example 2.97 F-distribution

# Simulate
nu1 = 8; nu2 = 10; k = 200
u = stats.chi2.rvs(size=k, df=nu1)
v = stats.chi2.rvs(size=k, df=nu2)
fobs = (u/nu1) / (v/nu2)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.hist(fobs, density=True, label='epdf')
ax1.plot(np.arange(0,5.01,0.01), stats.f.pdf(np.arange(0,5.01,0.01), dfn=nu1, dfd=nu2), color="red", label='pdf')
stats.ecdf(fobs).cdf.plot(ax2, label='ecdf', linewidth=3)
ax2.plot(np.arange(0,5.01,0.01), stats.f.cdf(np.arange(0,5.01,0.01), dfn=nu1, dfd=nu2), color="red", label='cdf')
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.
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Theorem 2.98

Let X1, . . . , Xn1 be independent and sampled from a normal distribution
with mean µ1 and variance σ2

1 , further let Y1, . . . , Yn2 be independent and
sampled from a normal distribution with mean µ2 and variance σ2

2 . Then
the statistic

F =
S2

1/σ2
1

S2
2/σ2

2
∼ F(n1 − 1, n2 − 1), (2-106)

follows an F-distribution.

Proof

Note that (n1−1)S2
1

σ2
1
∼ χ2(n1 − 1) and (n2−1)S2

2
σ2

2
∼ χ2(n2 − 1) and hence

(n1−1)S2
1

σ2
1 (n1−1)

(n2−1)S2
2

σ2
2 (n2−1)

=

S2
1

σ2
1

S2
2

σ2
2

∼ F(n1 − 1, n2 − 1). (2-107)

�

We can also illustrate this sample version by simulation:

Example 2.99 Relation between normal and F-distribution

# Simulate
n1 = 8; n2 = 10; k = 200
mu1 = 2; mu2 = -1
sigma1 = 2; sigma2 = 4
s1 = np.array([np.std(stats.norm.rvs(size=n1, loc=mu1, scale=sigma1)) for _ in range(k)])
s2 = np.array([np.std(stats.norm.rvs(size=n2, loc=mu2, scale=sigma2)) for _ in range(k)])
fobs = (s1**2 / sigma1**2) / (s2**2 / sigma2**2)
# Plot
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.hist(fobs, density=True, label='epdf')
ax1.plot(np.arange(0,6.01,0.01), stats.f.pdf(np.arange(0,6.01,0.01), dfn=nu1-1, dfd=nu2-1), color="red", label='pdf')
stats.ecdf(fobs).cdf.plot(ax2, label='ecdf', linewidth=3)
ax2.plot(np.arange(0,6.01,0.01), stats.f.cdf(np.arange(0,6.01,0.01), dfn=nu1-1, dfd=nu2-1), color="red", label='cdf')
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

Remark 2.100

Of particular importance in statistics is the case when σ1 = σ2, in this case

F =
S2

1
S2

2
∼ F(n1 − 1, n2 − 1). (2-108)

Theorem 2.101 Mean and variance

Let F ∼ F(ν1, ν2) then the mean and variance of F is

E(F) =
ν2

ν2 − 2
; ν2 > 2, (2-109)

V(F) =
2ν2

2(ν1 + ν2 − 2)
ν1(ν2 − 2)2(ν2 − 4)

; ν2 > 4. (2-110)
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Chapter 3

Statistics for one and two samples

3.1 Learning from one-sample quantitative data

Statistics is the art and science of learning from data, i.e. statistical inference.
What we are usually interested in learning about is the population from which
our sample was taken, as described in Section 1.3. More specifically, most of
the time the aim is to learn about the mean of this population, as illustrated in
Figure 1.1.

Example 3.1 Student heights

In examples in Chapter 1 we did descriptive statistics on the following random sam-
ple of the heights of 10 students in a statistics class (in cm):

168 161 167 179 184 166 198 187 191 179

and we computed the sample mean and standard deviation to be

x̄ = 178,

s = 12.21.

The population distribution of heights will have some unknown mean µ and some
unknown standard deviation σ. We use the sample values as point estimates for
these population parameters

µ̂ = 178,

σ̂ = 12.21.
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Since we only have a sample of 10 persons, we know that the point estimate of 178
cannot with 100% certainty be exactly the true value µ (if we collected a new sample
with 10 different persons height and computed the sample mean we would defi-
nitely expect this to be different from 178). The way we will handle this uncertainty
is by computing an interval called the confidence interval for µ. The confidence in-
terval is a way to handle the uncertainty by the use of probability theory. The most
commonly used confidence interval would in this case be

178± 2.26 · 12.21√
10

,

which is

178± 8.74.

The number 2.26 comes from a specific probability distribution called the t-
distribution, presented in Section 2.86. The t-distributions are similar to the stan-
dard normal distribution presented in Section 2.5.2: they are symmetric and centred
around 0.

The confidence interval interval

178± 8.74 = [169.3, 186.7],

represents the plausible values of the unknown population mean µ in light of the
data.

So in this section we will explain how to estimate the mean of a distribution and
how to quantify the precision, or equivalently the uncertainty, of our estimate.

We will start by considering a population characterized by some distribution
from which we take a sample x1, . . . , xn of size n. In the example above Xi
would be the height of a randomly selected person and x1, . . . , x10 our sample
of student heights.

A crucial issue in the confidence interval is to use the correct probabilities, that
is, we must use probability distributions that are properly representing the real
life phenomena we are investigating. In the height example, the population
distribution is the distribution of all heights in the entire population. So, this
is what you would see if you sampled from a huge amount of heights, say
n = 1000000, and then made a density histogram of these, see Example 1.25.
Another way of saying the same is: the random variables Xi have a probability
density function (pdf or f (x)) which describe exactly the distribution of all the
values. Well, in our setting we have only a rather small sample, so in fact we
may have to assume some specific pdf for Xi, since we don’t know it and really
can’t see it well from the small sample. The most common type of assumption,
or one could say model, for the population distribution is to assume it to be the
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normal distribution. This assumption makes the theoretical justification for the
methods easier. In many cases real life phenomena actually indeed are nicely
modelled by a normal distribution. In many other cases they are not. After tak-
ing you through the methodology based on a normal population distribution
assumption, we will show and discuss what to do with the non-normal cases.

Hence, we will assume that the random variable Xi follows a normal distribution
with mean µ and variance σ2:

Remark 3.2 How to write a statistical model

In all statistical analysis there must be an assumption of a model, which
should be stated clearly in the presentation of the analysis. The model ex-
pressing that the sample was taken randomly from the population, which is
normal distributed, can be written by

Xi ∼ N(µ, σ2) and i.i.d., where i = 1, . . . , n. (3-1)

Hence we n random variables representing the sample and they are indepen-
dent and identically distributed (i.i.d).

Our goal is to learn about the mean of the population µ, in particular, we want
to:

1. Estimate µ, that is calculate a best guess of µ based on the sample

2. Quantify the precision, or equivalently the uncertainty, of the estimate

Intuitively, the best guess of the population mean µ is the sample mean

µ̂ = x̄ =
1
n

n

∑
i=1

xi.

Actually, there is a formal theoretical framework to support that this sort of ob-
vious choice also is the theoretically best choice, when we have assumed that
the underlying distribution is normal. The next sections will be concerned with
answering the second question: quantifying how precisely x̄ estimates µ, that
is, how close we can expect the sample mean x̄ to be to the true, but unknown,
population mean µ. To answer this, we first, in Section 3.1.1, discuss the dis-
tribution of the sample mean, and then, in Section 3.1.2, discuss the confidence
interval for µ, which is universally used to quantify precision or uncertainty.
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3.1.1 Distribution of the sample mean

As indicated in Example 3.1 the challenge we have in using the sample mean x̄
as an estimate of µ is the unpleasant fact that the next sample we take would
give us a different result, so there is a clear element of randomness in our esti-
mate. More formally, if we take a new sample from the population, let us call
it x2,1, . . . , x2,n, then the sample mean of this, x̄2 = 1

n ∑n
i=1 x2,i will be different

from the sample mean of the first sample we took. In fact, we can repeat this
process as many times as we would like, and we would obtain:

1. Sample x1,1, . . . , x1,n and calculate the average x̄1

2. Sample x2,1, . . . , x2,n and calculate the average x̄2

3. Sample x3,1, . . . , x3,n and calculate the average x̄3

4. etc.

Since the sample means x̄j will all be different, it is apparent that the sample
mean is also the realization of a random variable. In fact it can be shown that if X
is a random variable with a normal distribution with mean µ and variance σ2,
then the random sample mean X̄ from a sample of size n is also a normally
distributed random variable with mean µ and variance σ2/n. This result is
formally expressed in the following theorem:

Theorem 3.3 The distribution of the mean of normal random vari-
ables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, Xi ∼ N(µ, σ2), i = 1, . . . , n, then

X̄ =
1
n

n

∑
i=1

Xi ∼ N
(

µ,
σ2

n

)
. (3-2)

Note how the formula in the theorem regarding the mean and variance of X̄ is
a consequence of the mean and variance of linear combinations Theorem 2.56

E(X̄) =
1
n

n

∑
i=1

E(Xi) =
1
n

n

∑
i=1

µ =
1
n

nµ = µ, (3-3)
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and

V(X̄) =
1
n2

n

∑
i=1

V(Xi) =
1
n2

n

∑
i=1

σ2 =
1
n2 nσ2 =

σ2

n
, (3-4)

and using Theorem 2.40 it is clear that the mean of normal distributions also is
a normal distribution.

One important point to read from this theorem is that it tells us, at least
theoretically, what the variance of the sample mean is, and hence also
the standard deviation

σX̄ =
σ√
n

. (3-5)

Let us elaborate a little on the importance of this. Due to the basic
rules for mean and variance calculations, i.e. Theorem 2.56, we know
that the difference between X̄ and µ has the same standard deviation

σ(X̄−µ) =
σ√
n

. (3-6)

This is the mean absolute difference between the sample estimate X̄
and the true µ, or in other words: this is the mean of the error we will
make using the sample mean to estimate the population mean. This is
exactly what we are interested in: to use a probability distribution to
handle the possible error we make.

In our way of justifying and making explicit methods it is useful to consider
the so-called standardized sample mean, where the X̄ − µ is seen relative to its
standard deviation, and using the standardization of normal distributions in
Theorem 2.43, which states that the standardized sample mean has a standard
normal distribution:

Theorem 3.4 The distribution of the σ-standardized mean of nor-
mal random variables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, Xi ∼ N

(
µ, σ2) where i = 1, . . . , n, then

Z =
X̄− µ

σ/
√

n
∼ N

(
0, 12

)
. (3-7)

That is, the standardized sample mean Z follows a standard normal distri-
bution.
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However, to somehow use the probabilities to say something clever about how
close the estimate x̄ is to µ, all these results have a flaw: the population standard
deviation σ (true, but unknown) is part of the formula. And in most practical
cases we don’t know the true standard deviation σ. The natural thing to do is
to use the sample standard deviation s as a substitute for (estimate of) σ. How-
ever, then the theory above breaks down: the sample mean standardized by the
sample standard deviation instead of the true standard deviation no longer has
a normal distribution! But luckily the distribution can be found (as a probability
theoretical result) and we call such a distribution a t-distribution with (n− 1)
degrees of freedom (for more details see Section 2.10.2):

Theorem 3.5 The distribution of the S-standardized mean of nor-
mal random variables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, where Xi ∼ N

(
µ, σ2) and i = 1, . . . , n, then

T =
X̄− µ

S/
√

n
∼ t(n− 1), (3-8)

where t(n− 1) is the t-distribution with n− 1 degrees of freedom.

A t-distribution, as any other distribution, has a probability density function,
presented in Definition 2.86. It is similar in shape to the standard normal dis-
tribution: it is symmetric and centred around 0, but it has thicker tails as il-
lustrated in the figure of Example 2.92. Also, the t-distributions are directly
available in Python, via the SciPy package as seen also for the other probability
distributions, see the overview of distributions in A.2.1. So we can easily work
with t-distributions in practice. As indicated, there is a different t-distribution
for each n: the larger the n, the closer the t-distribution is to the standard normal
distribution.
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Example 3.6 Normal and t probabilities and quantiles

In this example we compare some probabilities from the standard normal distribu-
tion with the corresponding ones from the t-distribution with various numbers of
degrees of freedom.

Let us compare P(T > 1.96) for some different values of n with P(Z > 1.96):

# The P(T>1.96) probability for n=10
print(1-stats.t.cdf(1.96,df=9))

0.04082220273020831

# The P(Z>1.96) probability
print(1-stats.norm.cdf(1.96))

0.024997895148220484

# The P(T>1.96) probability for n-values, 10, 20, ... ,50
print(1-stats.t.cdf(1.96,df=np.linspace(10, 50, 5)-1))

[0.041 0.032 0.030 0.029 0.028]

# The P(T>1.96) probability for n-values, 100, 200, ... ,500
print(1-stats.t.cdf(1.96,df=np.linspace(100, 500, 5)-1))

[0.026 0.026 0.025 0.025 0.025]

Note how the t-probabilities approach the standard normal probabilities as n in-
creases. Similarly for the quantiles:
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# The standard normal 97.5% quantile
print(stats.norm.ppf(0.975,loc=0,scale=1))

1.959963984540054

# The t-quantiles for n-values: 10, 20, ... ,50
# (rounded to 3 decimal points)
print(stats.t.ppf(0.975,df=np.linspace(10, 50, 5)-1))

[2.262 2.093 2.045 2.023 2.010]

# The t-quantiles for n-values: 100, 200, ... ,500
# (rounded to 3 decimal points)
print(stats.t.ppf(0.975,df=np.linspace(100, 500, 5)-1))

[1.984 1.972 1.968 1.966 1.965]

The sample version of the standard deviation of the sample mean s/
√

n is called
the Standard Error of the Mean (and is often abbreviated SEM):

Definition 3.7 Standard Error of the mean

Given a sample X1, . . . , Xn, the Standard Error of the Mean is defined as

σx̄ =
S√
n

. (3-9)

It can also be read as the Sampling Error of the mean, and can be called the
standard deviation of the sampling distribution of the mean.
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Remark 3.8

Using the phrase sampling distribution as compared to just the distribution of
the mean bears no mathematical/formal distinction: formally a probability
distribution is a probability distribution and there exist only one definition
of that. It is merely used to emphasize the role played by the distribution of
the sample mean, namely to quantify how the sample mean changes from
(potential) sample to sample, so more generally, the sample mean has a dis-
tribution (from sample to sample), so most textbooks and e.g. Wikipedia
would call this distribution a sampling distribution.

3.1.2 Quantifying the precision of the sample mean - the confi-
dence interval

As already discussed above, estimating the mean from a sample is usually not
enough: we also want to know how close this estimate is to the true mean (i.e.
the population mean). Using knowledge about probability distributions, we are
able to quantify the uncertainty of our estimate even without knowing the true
mean. Statistical practice is to quantify precision (or, equivalently, uncertainty)
with a confidence interval (CI).

In this section we will provide the explicit formula for and discuss confidence
intervals for the population mean µ. The theoretical justification, and hence as-
sumptions of the method, is a normal distribution of the population. However,
it will be clear in a subsequent section that the applicability goes beyond this
if the sample size n is large enough. The standard so-called one-sample confi-
dence interval method is:
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Method 3.9 The one sample confidence interval for µ

For a sample x1, . . . , xn the 100(1− α)% confidence interval is given by

x̄± t1−α/2 ·
s√
n

, (3-10)

where t1−α/2 is the (1 − α/2) quantile from the t-distribution with n − 1
degrees of freedom.a

Most commonly used is the 95%-confidence interval:

x̄± t0.975 ·
s√
n

. (3-11)

aNote how the dependence of n has been suppressed from the notation to leave room for
using the quantile as index instead - since using two indices would appear less readable:
tn−1,1−α/2

We will reserve the Method boxes for specific directly applicable statistical meth-
ods/formulas (as opposed to theorems and formulas used to explain, justify or
prove various points).

Example 3.10 Student heights

We can now use Method 3.9 to find the 95% confidence interval for the population
mean height from the height sample from Example 3.1. We need the 0.975-quantile
from the t-distribution with n− 1 = 9 degrees of freedom:

# The t-quantiles for n=10:
print(stats.t.ppf(0.975,df=9))

2.2621571628540993

And we can recognize the already stated result

178± 2.26 · 12.21√
10

,

which is

178± 8.74 = [169.3, 186.7].

Therefore with high confidence we conclude that the true mean height of the popu-
lation of students to be between 169.3 and 186.7.
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The confidence interval is widely used to summarize uncertainty, not only for
the sample mean, but also for many other types of estimates, as we shall see
in later sections of this chapter and in following chapters. It is quite common
to use 95% confidence intervals, but other levels, e.g. 99% are also used (it is
presented later in this chapter what the precise meaning of “other levels” is).

Example 3.11 Student heights

Let us try to find the 99% confidence interval for µ for the height sample from Exam-
ple 3.1. Now α = 0.01 and we get that 1− α/2 = 0.995, so we need the 0.995-quantile
from the t-distribution with n− 1 = 9 degrees of freedom:

# The t-quantile for n=10
print(stats.t.ppf(0.995,df=9))

3.2498355415921254

And we can find the result as

178± 3.25 · 12.21√
10

,

which is:

178± 12.55 = [165.5, 190.5].

Or explicitly in Python:

# The 99% confidence interval for the mean
x = np.array([168, 161, 167, 179, 184, 166, 198, 187, 191, 179])
n = len(x)
print(x.mean() - stats.t.ppf(0.995,df=9) * x.std(ddof=1) / np.sqrt(n))

165.45078999139582

print(x.mean() + stats.t.ppf(0.995,df=9) * x.std(ddof=1) / np.sqrt(n))

190.54921000860418

Or using the function stats.t.interval from the SciPy package:
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# The 99% confidence interval for the mean
stats.t.interval(0.99,df=n-1,loc=x.mean(),
scale=x.std(ddof=1)/np.sqrt(n))

(np.float64(165.45078999139582), np.float64(190.54921000860418))

Later we will introduce a function from the SciPy package that performs a “t-
test”, which can also be used to calculate confidence intervals.

In our motivation of the confidence interval we used the assumption that the
population is normal distributed. Thankfully, as already pointed out above, the
validity is not particularly sensitive to the normal distribution assumption. In
later sections, we will discuss how to assess if the sample is sufficiently close to
a normal distribution, and what we can do if the assumption is not satisfied.

3.1.3 The language of statistics and the process of learning from
data

In this section we review what it means to make statistical inference using a
confidence interval. We review the concepts, first presented in Section 1.3, of: a
population, distribution, a parameter, an estimate, an estimator, and a statistic.

The basic idea in statistics is that there exists a statistical population (or just
population) which we want to know about or learn about, but we only have
a sample from that population. The idea is to use the sample to say something
about the population. To generalize from the sample to the population, we
characterize the population by a distribution (see Definition 1.1 and Figure 1.1).

For example, if we are interested in the weight of eggs lain by a particular
species of hen, the population consists of the weights of all currently existing
eggs as well as weights of eggs that formerly existed and will (potentially) exist
in the future. We may characterize these weights by a normal distribution with
mean µ and variance σ2. If we let X denote the weight of a randomly chosen
egg, then we may write X ∼ N(µ, σ2). We say that µ and σ2 are the parameters
of this distribution - we call them population parameters.

Naturally, we do not know the values of these true parameters, and it is impos-
sible for us to ever know, since it would require that we weighed all possible
eggs that have existed or could have existed. In fact the true parameters of the
distribution N(µ, σ2) are unknown and will forever remain unknown.
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If we take a random sample of eggs from the population of egg weights, say
we make 10 observations, then we have x1, . . . , x10. We call this the observed sam-
ple or just sample. From the sample, we can calculate the sample mean, x̄. We
say that x̄ is an estimate of the true population mean µ (or just mean, see Remark
1.3). In general we distinguish estimates of the parameters from the parameters
themselves, by adding a hat (circumflex). For instance, when we use the sample
mean as an estimate of the mean, we may write µ̂ = x̄ for the estimate and µ for
the parameter, see the illustration of this process in Figure 1.1.

We denote parameters such as µ and σ2 by Greek letters. Therefore parame-
ter estimates are Greek letters with hats on them. Random variables such as
X are denoted by capital Roman letters. The observed values of the random
variables are denoted by lower case instead – we call them realizations of the ran-
dom variables. For example, the sample x1, . . . , x10 represents actually observed
numbers (e.g. the weights of 10 eggs), so they are not random and therefore in
lower case. If we consider a hypothetical sample it is yet unobserved and there-
fore random and denoted by, say, X1, . . . , Xn and therefore in capital letters, see
also Section 2.1.

To emphasize the difference, we say that X1, . . . , Xn is a random sample, while we
say that x1, . . . , xn is a sample taken at random; the observed sample is not random
when it is observed, but it was produced as a result of n random experiments.

A statistic is a function of the data, and it can represent both a fixed value from
an observed sample or a random variable from a random (yet unobserved) sam-
ple. For example sample average x̄ = 1

n ∑n
i=1 xi is a statistic computed from an

observed sample, while X̄ = 1
n ∑n

i=1 Xi is also a statistic, but it is considered
a function of a random (yet unobserved) sample. Therefore X̄ is itself a ran-
dom variable with a distribution. Similarly the sample variance S2 is a random
variable, while s2 is its realized value and just a number.

An estimator (not to be confused with an estimate) is a function that produces an
estimate. For example, µ is a parameter, µ̂ is the estimate and we use X̄ as an
estimator of µ. Here X̄ is the function that produces the estimate of µ from a
sample.

Learning from data is learning about parameters of distributions that describe
populations. For this process to be meaningful, the sample should in a mean-
ingful way be representative of the relevant population. One way to ensure that
this is the case is to make sure that the sample is taken completely at random
from the population, as formally defined here:
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Definition 3.12 Random sample

A random sample from an (infinite) population: A set of observations
X1, ..., Xn constitutes a random sample of size n from the infinite population
f (x) if:

1. Each Xi is a random variable whose distribution is given by f (x)

2. The n random variables are independent

It is a bit difficult to fully comprehend what this definition really amounts to
in practice, but in brief one can say that the observations should come from
the same population distribution, and that they must each represent truly new
information (the independence).

Remark 3.13

Throughout previous sections and the rest of this chapter we assume infinite
populations. Finite populations of course exists, but only when the sam-
ple constitutes a large proportion of the entire population, is it necessary to
adjust the methods we discuss here. This occurs relatively infrequently in
practice and we will not discuss such conditions.

3.1.4 When we cannot assume a normal distribution: the Central
Limit Theorem

The Central Limit Theorem (CLT) states that the sample mean of independent
identically distributed (i.i.d.) random variables converges to a normal distribu-
tion:
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Theorem 3.14 Central Limit Theorem (CLT)

Let X̄ be the sample mean of a random sample of size n taken from a popu-
lation with mean µ and variance σ2, then

Z =
X̄− µ

σ/
√

n
, (3-12)

is a random variable which distribution function approaches that of the
standard normal distribution, N(0, 12), as n → ∞. In other words, for large
enough n, it holds approximately that

X̄− µ

σ/
√

n
∼ N(0, 12). (3-13)

The powerful feature of the CLT is that, when the sample size n is large enough,
the distribution of the sample mean X̄ is (almost) independent of the distri-
bution of the population X. This means that the underlying distribution of a
sample can be disregarded when carrying out inference related to the mean.
The variance of the sample mean can be estimated from the sample and it can
be seen that as n increases the variance of the sample mean decreases, hence the
“accuracy” with which we can infer increases.
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Example 3.15 Central Limit Theorem in practice

# Number of simulated samples
k = 1000
# Number of observations in each sample
n = 1
# Simulate k samples with n observations
Xbar1 = stats.uniform.rvs(0,1, size=(k,n))
# Increase the number of observations in each sample
n = 2
Xbar2 = pd.DataFrame(stats.uniform.rvs(0,1, size=(k,n))).mean(axis=1)
# Increase the number of observations in each sample
n = 6
Xbar6 = pd.DataFrame(stats.uniform.rvs(0,1, size=(k,n))).mean(axis=1)
# Increase the number of observations in each sample
n = 30
Xbar30 = pd.DataFrame(stats.uniform.rvs(0,1, size=(k,n))).mean(axis=1)
# Plot the histograms
fig, axs = plt.subplots(2,2)
axs[0,0].hist(Xbar1, bins=50, range=[0,1], edgecolor='black', color='blue', alpha=0.7)
axs[0,1].hist(Xbar2, bins=50, range=[0,1], edgecolor='black', color='blue', alpha=0.7)
axs[1,0].hist(Xbar6, bins=50, range=[0,1], edgecolor='black', color='blue', alpha=0.7)
axs[1,1].hist(Xbar30, bins=50, range=[0,1], edgecolor='black', color='blue', alpha=0.7)
plt.tight_layout()
plt.show()
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Notice how the plot resembles the front page.
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Due to the amazing result of the Central Limit Theorem 3.14 many expositions
of classical statistics provides a version of the confidence interval based on the
standard normal quantiles rather than the t-quantiles

x̄± z1−α/2 ·
s√
n

. (3-14)

We present it here only as an interesting limit situation of the t-based interval in
Method 3.9.

For large samples, the standard normal distribution and t-distribution are al-
most the same, so in practical situations, it doesn’t matter whether the normal
based or the t-based confidence interval (CI) is used. Since the t-based inter-
val is also valid for small samples when a normal distribution is assumed,
we recommend that the t-based interval in Method 3.9 is used in all situa-
tions. This recommendation also has the advantage that the SciPy-function
stats.t.interval, which produces the t-based interval, can be used in all cases.

How large should the sample then be in a non-normal case to ensure the validity
of the interval? No general answer can be given, but as a rule of thumb we
recommend n ≥ 30.

When we have a small sample for which we cannot or will not make a nor-
mality assumption, we have not yet presented a valid CI method. The classical
solution is to use the so-called non-parametric methods. However, in the next
chapter we will present the more widely applicable simulation or re-sampling
based techniques.

3.1.5 Repeated sampling interpretation of confidence intervals

In this section we show that 95% of the 95% confidence intervals we make will
cover the true value in the long run. Or, in general 100(1− α)% of the 100(1−
α)% confidence intervals we make will cover the true value in the long run. For
example, if we make 100 95% CI we cannot guarantee that exactly 95 of these
will cover the true value, but if we repeatedly make 100 95% CIs then on average
95 of them will cover the true value.

Example 3.16 Simulating many confidence intervals

To illustrate this with a simulation example, then we can generate 50 random
N(1, 12) distributed numbers and calculate the t-based CI given in Method 3.9, and
then repeated this 1000 times to see how many times the true mean µ = 1 is covered.
The following code illustrates this:
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# Simulate 1000 samples each with 50 observations
x = pd.DataFrame(stats.norm.rvs(loc=1,scale=1,size=(1000,50)))
# Calculate a 95% CI from each sample
CIs = stats.t.interval(0.95,df=50-1,loc=x.mean(axis=1),
scale=x.std(ddof=1,axis=1)/np.sqrt(50))
# Count how often 1 is covered
print(np.sum((CIs[0] <= 1) & (CIs[1] >= 1)))

954

Hence in 954 of the 1000 repetitions (i.e. 95.4%) the CI covered the true value. If
we repeat the whole simulation over, we would obtain 1000 different samples and
therefore 1000 different CIs. Again we expect that approximately 95% of the CIs will
cover the true value µ = 1.

The result that we arrived at by simulation in the previous example can also be
derived mathematically. Since

T =
X̄− µ

S/
√

n
∼ t(n− 1),

where t is the t-distribution with n− 1 degrees of freedom, it holds that

1− α = P
(
−t1−α/2 <

X̄− µ

S/
√

n
< t1−α/2

)
,

which we can rewrite as

= P
(

X̄− t1−α/2
S√
n
< µ < X̄ + t1−α/2

S√
n

)
.

Thus, the probability that the interval with limits

X̄± t1−α/2
S√
n

, (3-15)

covers the true value µ is exactly 1− α. One thing to note is that the only dif-
ference between the interval above and the interval in Method 3.9, is that the
interval above is written with capital letters (simply indicating that it calculated
with random variables rather than with observations).

This shows exactly that 100(1− α)% of the 100(1− α)% confidence interval we
make will contain the true value in the long run.
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3.1.6 Confidence interval for the variance

In previous sections we discussed how to calculate a confidence interval for the
mean. In this section we discuss how to calculate a confidence interval for the
variance or the standard deviation.

We will assume that the observations come from a normal distribution through-
out this section, and we will not present any methods that are valid beyond this
assumption. While the methods for the sample mean in the previous sections
are not sensitive to (minor) deviations from the normal distribution, the meth-
ods discussed in this section for the sample variance rely much more heavily on
the correctness of the normal distribution assumption.

Example 3.17 Tablet production

In the production of tablets, an active matter is mixed with a powder and then the
mixture is formed to tablets. It is important that the mixture is homogeneous, such
that each tablet has the same strength.

We consider a mixture (of the active matter and powder) from where a large amount
of tablets is to be produced.

We seek to produce the mixtures (and the final tablets) such that the mean content of
the active matter is 1 mg/g with the smallest variance possible. A random sample is
collected where the amount of active matter is measured. It is assumed that all the
measurements follow a normal distribution.

The variance estimator, that is, the formula for the variance seen as a random
variable, is

S2 =
1

n− 1

n

∑
i=1

(Xi − X̄)2, (3-16)

where n is the number of observations, Xi is observation number i where i =
1, . . . , n, and X̄ is the estimator of the mean of X.

The (sampling) distribution of the variance estimator is the χ2-distribution dis-
tribution: let S2 be the variance of a sample of size n from a normal distribution
with variance σ2, then

χ2 =
(n− 1)S2

σ2 , (3-17)

is a stochastic variable following the χ2-distribution with v = n− 1 degrees of
freedom.
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The χ2-distribution, as any other distribution, has a probability density func-
tion. It is a non-symmetric distribution on the positive axis. It is a distribution
of squared normal random variables, for more details see Section 2.10.1. An
example of a χ2-distribution is given in the following:

Example 3.18 The χ2-distribution

The density of the χ2-distribution with 9 degrees of freedom is:

# The chi-square-distribution with df=9 (the density)
x = np.linspace(0, 35, 1000)
plt.plot(x,stats.chi2.pdf(x,df=9))
plt.ylabel('Density',fontsize=12)
plt.tight_layout()
plt.show()
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So, the χ2-distributions are directly available in Python, via the SciPy pack-
age as seen for the other probability distributions presented in the distribution
overview, see Appendix A.3.

Hence, we can easily work with χ2-distributions in practice. As indicated there
is a different χ2-distribution for each n.
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Method 3.19 Confidence interval for the variance/standard devia-
tion

A 100(1− α)% confidence interval for the variance σ2 is
[
(n− 1)s2

χ2
1−α/2

,
(n− 1)s2

χ2
α/2

]
, (3-18)

where the quantiles come from a χ2-distribution with ν = n− 1 degrees of
freedom.

A 100(1− α)% confidence interval for the standard deviation σ is
[√

(n− 1)s2

χ2
1−α/2

,

√
(n− 1)s2

χ2
α/2

]
. (3-19)

Note: The confidence intervals for the variance and standard deviations are
generally non-symmetric as opposed to the t-based interval for the mean µ.

Example 3.20 Tablet production

A random sample of n = 20 tablets is collected and from this the mean is estimated
to x̄ = 1.01 and the variance to s2 = 0.072. Let us find the 95%-confidence interval
for the variance. To apply the method above we need the 0.025 and 0.975 quantiles
of the χ2-distribution with ν = 20− 1 = 19 degrees of freedom

χ2
0.025 = 8.907, χ2

0.975 = 32.85,

which we get from Python:

# Quantiles of the chi-square distribution:
print(stats.chi2.ppf([0.025,0.975],df=19))

[ 8.907 32.852]

Hence the confidence interval is
[

19 · 0.072

32.85
,

19 · 0.072

8.907

]
≈ [0.00283, 0.0105],

and for the standard deviation the confidence interval is
[√

0.002834,
√

0.01045
]
≈ [0.053, 0.102] .
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3.1.7 Hypothesis testing, evidence, significance and the p-value

Example 3.21 Sleeping medicine

In a study the aim is to compare two kinds of sleeping medicine A and B. 10 test
persons tried both kinds of medicine and the following 10 DIFFERENCES between
the two medicine types were measured (in hours):

Person x = Beffect - Aeffect
1 1.2
2 2.4
3 1.3
4 1.3
5 0.9
6 1.0
7 1.8
8 0.8
9 4.6

10 1.4

For Person 1, Medicine B provided 1.2 sleep hours more than Medicine A, etc.

Our aim is to use these data to investigate if the two treatments are different in their
effect on length of sleep. We therefore let µ represent the mean difference in sleep
length. In particular we will consider the so-called null hypothesis

H0 : µ = 0,

which states that there is no difference in sleep length between the A and B Medicines.

If the observed sample turns out to be not very likely under this null hypothesis, we
conclude that the null hypothesis is unlikely to be true.

First we compute the sample mean

µ̂ = x̄1 = 1.67.

As of now, we don’t know if this number is particularly small or large. If the true
mean difference is zero, would it be unlikely to observe a mean difference this large?
Could it be due to just random variation? To answer this question we compute the
probability of observing a sample mean that is 1.67 or further from 0 – in the case
that the true mean difference is in fact zero. This probability is called a p-value. If
the p-value is small (say less than 0.05), we conclude that the null hypothesis isn’t
true. If the p-value is not small (say larger than 0.05), we conclude that we haven’t
obtained sufficient evidence to falsify the null hypothesis.
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After some computations that you will learn to perform later in this section, we
obtain a p-value

p-value ≈ 0.00117,

which indicates quite strong evidence against the null hypothesis. As a matter of
fact, the probability of observing a mean difference as far from zero as 1.67 or further
is only ≈ 0.001 (one out of thousand) and therefore very small.

We conclude that the null hypothesis is unlikely to be true as it is highly incompat-
ible with the observed data. We say that the observed mean µ̂ = 1.67 is statistically
significantly different from zero (or simply significant implying that it is different from
zero). Or that there is a significant difference in treatment effects of B and A, and we may
conclude that Medicine B makes patients sleep significantly longer than Medicine
A.
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p < 0.001 Very strong evidence against H0
0.001 ≤ p < 0.01 Strong evidence against H0
0.01 ≤ p < 0.05 Some evidence against H0
0.05 ≤ p < 0.1 Weak evidence against H0

p ≥ 0.1 Little or no evidence against H0

Table 3.1: A way to interpret the evidence for a given p-value.

The p-value

Definition 3.22 The p-value

The p-value is the probability of obtaining a test statistic that is at least as
extreme as the test statistic that was actually observed. This probability is
calculated under the assumption that the null hypothesis is true.

Interpretations of a p-value:

1. The p-value measures evidence

2. The p-value measures extremeness/unusualness of the data under the
null hypothesis (“under the null hypothesis” means “assuming the null
hypothesis is true”)

The p-value is used as a general measure of evidence against a null hypothesis:
the smaller the p-value, the stronger the evidence against the null hypothesis
H0. A typical strength of evidence scale is given in Table 3.1.

As indicated, the definition and interpretations above are generic in the sense
that they can be used for any kind of hypothesis testing in any kind of setup.
In later sections and chapters of this material, we will indeed encounter many
different such setups. For the specific setup in focus here, we can now give the
key method:
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Method 3.23 The one-sample t-test statistic and the p-value

For a (quantitative) one sample situation, the p-value is given by

p-value = 2 · P(T > |tobs|), (3-20)

where T follows a t-distribution with (n− 1) degrees of freedom.
The observed value of the test statistics to be computed is

tobs =
x̄− µ0

s/
√

n
, (3-21)

where µ0 is the value of µ under the null hypothesis

H0 : µ = µ0. (3-22)

The t-test and the p-value will in some cases be used to formalize actual decision
making and the risks related to it:

Definition 3.24 The hypothesis test

We say that we carry out a hypothesis test when we decide against a null
hypothesis or not, using the data.

A null hypothesis is rejected if the p-value, calculated after the data has been
observed, is less than some α, that is if the p-value < α, where α is some pre-
specified (so-called) significance level. And if not, then the null hypothesis is
said to be accepted.

Remark 3.25

Often chosen significance levels α are 0.05, 0.01 or 0.001 with the former
being the globally chosen default value.
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Remark 3.26

A note of caution in the use of the word accepted is in place: this should
NOT be interpreted as having proved anything: accepting a null hypothesis
in statistics simply means that we could not prove it wrong! And the reason
for this could just potentially be that we did not collect sufficient amount of
data, and acceptance hence proofs nothing at its own right.

Example 3.27 Sleeping medicine

Continuing from Example 3.21, we now illustrate how to compute the p-value using
Method 3.23.

# Enter sleep difference observations
x = np.array([1.2, 2.4, 1.3, 1.3, 0.9, 1.0, 1.8, 0.8, 4.6, 1.4])
n = len(x)
# Compute the tobs - the observed test statistic
tobs = (x.mean() - 0)/(x.std(ddof=1) / np.sqrt(n))
print(tobs)

4.671645978656775

# Compute the p-value as a tail-probability in the t-distribution
pvalue = 2 * (1-stats.t.cdf(abs(tobs),df=n-1))
print(pvalue)

0.0011658764685527068

Naturally, a function in Python can do this for us (the results differ slightly due
to numerical inaccuracies). This function can also be used to calculate confidence
intervals:
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stats.ttest_1samp(x,popmean=0).pvalue

np.float64(0.0011658764685528319)

stats.ttest_1samp(x,popmean=0).confidence_interval()

ConfidenceInterval(low=np.float64(0.8613337442036719), high=np.float64(2.4786662557963277))

The confidence interval and the p-value supplements each other, and often both
the confidence interval and the p-value are reported. The confidence interval
covers those values of the parameter that we accept given the data, while the
p-value measures the extremeness of the data if the null hypothesis is true.

Example 3.28 Sleeping medicine

In the sleep medicine example the 95% confidence interval is

[0.86, 2.48] ,

so based on the data these are the values for the mean sleep difference of Medicine
B versus Medicine A that we accept can be true. Only if the data is so extreme
(i.e. rarely occurring) that we would only observe it 5% of the time the confidence
interval does not cover the true mean difference in sleep.

The p-value for the null hypothesis µ = 0 was ≈ 0.001 providing strong evidence
against the correctness of the null hypothesis.

If the null hypothesis was true, we would only observe this large a difference in
sleep medicine effect levels in around one out of a thousand times. Consequently
we conclude that the null hypothesis is unlikely to be true and reject it.

Statistical significance

The word significance can mean importance or the extent to which something matters
in our everyday language. In statistics, however, it has a very particular mean-
ing: if we say that an effect is significant, it means that the p-value is so low that
the null hypothesis stating no effect has been rejected at some significance level α.
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Definition 3.29 Significant effect

An effect is said to be (statistically) significant if the p-value is less than the
significance level α. a

aOften, α = 0.05 is adopted.

At this point an effect would amount to a µ-value different from µ0. In other
contexts we will see later, effects can be various features of interest to us.

Example 3.30 Statistical significance

Consider the following two situations:

1. A researcher decides on a significance level of α = 0.05 and obtains p-value =

0.023. She therefore concludes that the effect is statistically significant

2. Another researcher also adopts a significance level of α = 0.05, but obtains
p-value = 0.067. He concludes that the effect was not statistically significant

From a binary decision point of view the two researchers couldn’t disagree more.
However, from a scientific and more continuous evidence quantification point of
view there is not a dramatic difference between the findings of the two researchers.

In daily statistical and/or scientific jargon the word ”statistically” will often be
omitted, and when results then are communicated as significant further through
media or other places, it gives the risk that the distinction between the two
meanings gets lost. At first sight it may appear unimportant, but the big dif-
ference is the following: sometimes a statistically significant finding can be so
small in real size that it is of no real importance. If data collection involves very
big data sizes one may find statistically significant effects that for no practical
situations matter much or anything at all.

The null hypothesis

The null hypothesis most often expresses the status quo or that “nothing is hap-
pening”. This is what we have to believe before we perform any experiments
and observe any data. This is what we have to accept in the absence of any
evidence that the situation is otherwise. For example the null hypothesis in the
sleep medicine examples states that the difference in sleep medicine effect level
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Acceptance
Rejection Rejection

t0.025 t0.9750

Figure 3.1: The 95% critical value. If tobs falls in the pink area we would reject,
otherwise we would accept

is unchanged by the treatment: this is what we have to accept until we obtain
evidence otherwise. In this particular example the observed data and the statis-
tical theory provided such evidence and we could conclude a significant effect.

The null hypothesis has to be falsifiable. This means that it should be possible to
collect evidence against it.

Confidence intervals, critical values and significance levels

A hypothesis test, that is, making the decision between rejection and acceptance of
the null hypothesis, can also be carried out without actually finding the p-value.
As an alternative one can use the so-called critical values, that is the values of the
test-statistic which matches exactly the significance level, see Figure 3.1:

Definition 3.31 The critical values

The (1− α)100% critical values for the one-sample t-test are the α/2- and
1− α/2-quantiles of the t-distribution with n− 1 degrees of freedom

tα/2 and t1−α/2. (3-23)
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Method 3.32 The one-sample hypothesis test by the critical value

A null hypothesis is rejected if the observed test-statistic is more extreme than
the critical values

If |tobs| > t1−α/2 then reject, (3-24)

otherwise accept.

The confidence interval covers the acceptable values of the parameter given the
data:

Theorem 3.33 Confidence interval for µ

We consider a (1− α) · 100% confidence interval for µ

x̄± t1−α/2 ·
s√
n

. (3-25)

The confidence interval corresponds to the acceptance region for H0 when
testing the hypothesis

H0 : µ = µ0. (3-26)
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Remark 3.34

The proof of this theorem is almost straightforward: a µ0 inside the confi-
dence interval will fulfil that

|x̄− µ0| < t1−α/2 ·
s√
n

, (3-27)

which is equivalent to

|x̄− µ0|
s√
n

< t1−α/2, (3-28)

and again to

|tobs| < t1−α/2, (3-29)

which then exactly states that µ0 is accepted, since the tobs is within the
critical values.

The alternative hypothesis

Some times we may in addition to the null hypothesis, also explicitly state an
alternative hypothesis. This completes the framework that allows us to control the
rates at which we make correct and wrong conclusions in light of the alternative.

The alternative hypothesis is

H1 : µ 6= µ0. (3-30)

This is sometimes called the two-sided (or non-directional) alternative hypoth-
esis, because also one-sided (or directional) alternative hypothesis occur. How-
ever, the one-sided setup is not included in the book apart from a small discus-
sion below.

Example 3.35 Sleeping medicine – Alternative hypothesis

Continuing from Example 3.21 we can now set up the null hypothesis and the alter-
native hypothesis together

H0 : µ = 0

H1 : µ 6= 0.
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Which means that we have exactly the same setup just formalized by adding the
alternative hypothesis. The conclusion is naturally exactly the same as in before.

A generic approach for tests of hypotheses is:

1. Formulate the hypotheses and choose the level of significance α (choose
the "risk-level")

2. Calculate, using the data, the value of the test statistic

3. Calculate the p-value using the test statistic and the relevant sampling
distribution, compare the p-value and the significance level α, and finally
make a conclusion
or
Compare the value of the test statistic with the relevant critical value(s)
and make a conclusion

Combining this generic hypothesis test approach with the specific method boxes
of the previous section, we can now below give a method box for the one-
sample t-test. This is hence a collection of what was presented in the previous
section:
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Method 3.36 The level α one-sample t-test

1. Compute tobs using Equation (3-21)

tobs =
x̄− µ0

s/
√

n

2. Compute the evidence against the null hypothesis

H0 : µ = µ0, (3-31)

vs. the alternative hypothesis

H1 : µ 6= µ0, (3-32)

by the

p-value = 2 · P(T > |tobs|), (3-33)

where the t-distribution with n− 1 degrees of freedom is used

3. If the p-value < α, we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±t1−α/2:
if |tobs| > t1−α/2 we reject H0, otherwise we accept H0

The so-called one-sided (or directional) hypothesis setup, where the alternative
hypothesis is either “less than” or “greater than”, is opposed to the previous
presented two-sided (or non-directional) setup, with a “different from” alter-
native hypothesis. In most situations the two-sided should be applied, since
when setting up a null hypothesis with no knowledge about in which direction
the outcome will be, then the notion of “extreme” is naturally in both directions.
However, in some situations the one-sided setup makes sense to use. As for ex-
ample in pharmacology where concentrations of drugs are studied and in some
situations it is known that the concentration can only decrease from one time
point of measurement to another (after the peak concentration). In such case a
“less than” is the only meaningful alternative hypothesis – one can say that na-
ture really has made the decision for us in that: either the concentration has not
changed (the null hypothesis) or it has dropped (the alternative hypothesis). In
other cases, e.g. more from the business and/or judicial perspective, one-sided
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hypothesis testing come up when for example a claim about the performance of
some product is tested.

The one-sided “less than” hypothesis setup is: compute the evidence against
the null hypothesis vs. the one-sided alternative hypothesis

H0 : µ ≥ µ0 (3-34)
H1 : µ < µ0, (3-35)

by the

p-value = P(T < tobs). (3-36)

and equivalently for the “greater than” setup

H0 : µ ≤ µ0 (3-37)
H1 : µ > µ0, (3-38)

by the

p-value = P(T > tobs). (3-39)

In both cases: if p-value < α: We reject H0, otherwise we accept H0.

Note that there are no one-sided hypothesis testing involved in the exercises.

Errors in hypothesis testing

When testing statistical hypotheses, two kind of errors can occur:

Type I: Rejection of H0 when H0 is true

Type II: Non-rejection (acceptance) of H0 when H1 is true

Example 3.37 Ambulance times

An ambulance company claims that on average it takes 20 minutes from a telephone
call to their switchboard until an ambulance reaches the location.

We might have some measurements (in minutes): 21.1, 22.3, 19.6, 24.2, ...

If our goal is to show that on average it takes longer than 20 minutes, the null- and
the alternative hypotheses are

H0 : µ = 20,

H1 : µ 6= 20.



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 146

What kind of errors can occur?

Type I: Reject H0 when H0 is true, that is we mistakenly conclude that it takes longer
(or shorter) than 20 minutes for the ambulance to be on location

Type II: Not reject H0 when H1 is true, that is we mistakenly conclude that it takes
20 minutes for the ambulance to be on location

Example 3.38 Court of law analogy

A man is standing in a court of law accused of criminal activity.

The null- and the alternative hypotheses are

H0 : The man is not guilty,

H1 : The man is guilty.

We consider a man not guilty until evidence beyond any doubt proves him guilty.
This would correspond to an α of basically zero.

Clearly, we would prefer not to do any kinds of errors, however it is a fact of
life that we cannot avoid to do so: if we would want to never do a Type I error,
then we would never reject the null hypothesis, which means that we would
e.g. never conclude that one medical treatment is better than another, and thus,
that we would (more) often do a Type II error, since we would never detect
when there was a significance effect.

For the same investment (sample size n), we will increase the risk of a Type II
error by enforcing a lower risk of a Type I error. Only by increasing n we can
lower both of them, but to get both of them very low can be extremely expensive
and thus such decisions often involve economical considerations.

The statistical hypothesis testing framework is a way to formalize the handling
of the risk of the errors we may make and in this way make decisions in an
enlightened way knowing what the risks are. To that end we define the two
possible risks as

P("Type I error") = α,
P("Type II error") = β.

(3-40)

This notation is globally in statistical literature. The name choice for the Type I
error is in line with the use of α for the significance level, as:
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Theorem 3.39 Significance level and Type I error

The significance level α in hypothesis testing is the overall Type I risk

P("Type I error") = P("Rejection of H0 when H0 is true") = α. (3-41)

So controlling the Type I risk is what is most commonly apparent in the use of
statistics. Most published results are results that became significant, that is, the
p-value was smaller than α, and hence the relevant risk to consider is the Type I
risk.

Controlling/dealing with the Type II risk, that is: how to conclude on an exper-
iment/study in which the null hypothesis was not rejected (ı.e. no significant
effect was found) is not so easy, and may lead to heavy discussions if the non-
findings even get to the public. To which extent is a non-finding an evidence of
the null hypothesis being true? Well, in the outset the following very important
saying makes the point:

Remark 3.40

Absence of evidence is NOT evidence of absence!

Or differently put:
Accepting a null hypothesis is NOT a statistical proof of the null hypothesis
being true!

The main thing to consider here is that non-findings (non-significant results)
may be due to large variances and small sample sizes, so sometimes a non-
finding is indeed just that we know nothing. In other cases, if the sample sizes
were high, a non-finding may actually, if not proving an effect equal to zero,
which is not really possible, then at least indicate with some confidence that the
possible effect is small or even very small. The confidence interval is a more
clever method to use here, since the confidence interval will show the precision
of what we know, whether it includes the zero effect or not.

In Section 3.3 we will use a joint consideration of both error types to formalize
the planning of suitably sized studies/experiments.
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3.1.8 Assumptions and how to check them

The t-tests that have been presented above are based on some assumptions
about the sampling and the population. In Theorem 3.3 the formulations are
that the random variables X1, . . . , Xn are independent and identically normally
distributed: Xi ∼ N(µ, σ2). In this statement there are two assumptions:

• Independent observations

• Normal distribution

The assumption about independent observations can be difficult to check. It
means that each observation must bring a unique new amount of information to
the study. Independence will be violated if some measurements are not on ran-
domly selected units and share some feature – returning to the student height
example: we do not want to include twins or families in general. Having a sam-
ple of n = 20 heights, where 15 of them stem from a meeting with a large family
group would not be 20 independent observations. The independence assump-
tion is mainly checked by having information about the sampling procedure.

The assumption about normality can be checked graphically using the actual
sample at hand.

Example 3.41 Student heights

We will return to the height of the ten students from example 3.1. If we want to
check whether the sample of heights could come from a normal distribution then
we could plot a histogram and look for a symmetric bell-shape:

# The height sample
x = np.array([168,161,167,179,184,166,198,187,191,179])

# Using histograms
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
ax1.hist(x, bins=2, edgecolor='black', color='blue', alpha=0.7)
ax1.set(xlabel='Height', ylabel='Frequency')
ax2.hist(x, bins=4, edgecolor='black', color='blue', alpha=0.7)
ax2.set(xlabel='Height', ylabel='Frequency')
ax3.hist(x, bins=8, edgecolor='black', color='blue', alpha=0.7)
ax3.set(xlabel='Height', ylabel='Frequency')
plt.tight_layout()
plt.show()
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However, as we can see the histograms change shape depending on the number of
breaks. Instead of using histograms, one can plot empirical cumulative distribution
(see 1.6.2) and compare it with the best fitting normal distribution, in this case N(µ̂ =

178, σ̂2 = 12.212):

# Plot the empirical cdf
ecdf = stats.ecdf(x)
ax = plt.subplot()
ecdf.cdf.plot(ax)
ax.set(xlabel='Height', ylabel='Empirical CDF')
# Plot a normal cdf
y = np.linspace(159,201, 1000)
plt.plot(y,stats.norm.cdf(y,loc=x.mean(),
scale=x.std(ddof=1)),color="red")
plt.tight_layout()
plt.show()
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In the accumulated distribution plot it is easier to see how close the distributions are
– compared to in the density histogram plot. However, we will go one step further
and do the q-q plot: The observations (sorted from smallest to largest) are plotted
against the expected quantiles – from the same normal distribution as above. If the
observations are normally distributed then the observed are close to the expected
and this plot is close to a straight line. In Python we can generate this plot by the
following:

# A manual normal QQ-plot (normal Quantile-Quantile-plot)
# Calculate manual empirical CDF-values (p) for the observations in the sample
n = len(x)
p = np.linspace(0.5/n,1-0.5/n,n)
# Plot the theoretical normal quantiles associated with p (x-axis) against
# the observations. Note that the observations function as the sample
# quantiles. Thus, we compare the theoretical with the sample quantiles.
plt.scatter(stats.norm.ppf(p),np.sort(x))
# Plot straight line thorugh (TQ1,SQ1) and (TQ3,SQ3).
# T: Theoretical - S: Sample
TQ1 = stats.norm.ppf(0.25)
TQ3 = stats.norm.ppf(0.75)
SQ1 = np.quantile(x,0.25,method='averaged_inverted_cdf')
SQ3 = np.quantile(x,0.75,method='averaged_inverted_cdf')
plt.plot((TQ1,TQ3),(SQ1,SQ3),'yo')
plt.axline((TQ1,SQ1),(TQ3,SQ3),color="red")
# Notice that this not generate the same plot as the standard functions
plt.xlabel('Theoretical quantiles',fontsize=12)
plt.ylabel('Sample quantiles',fontsize=12)
plt.title('Manual normal QQ-plot',fontsize=16)
plt.tight_layout()
plt.show()
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In the ideal normal case, the observations vs. the expected quantiles in the best
possible normal distribution will be on a straight line, here plotted with the line
argument of the qqplot-function from the statsmodels package:

# Simulate 100 observations
np.random.seed(31415)
simx = stats.norm.rvs(loc=x.mean(), scale=x.std(ddof=1), size=100)
# Do the normal QQ-plot and QQ-line with standard functions
sm.qqplot(simx,line="q",a=1/2)
plt.tight_layout()
plt.show()
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Note that the inbuilt functions do exactly the same as the Python code generating
the first q-q plot as described in Method 3.42.

In this example the points are close to a straight line and we can assume that the
normal distribution holds. It can, however, be difficult to decide whether the plot
is close enough to a straight line, so we write a function that generates one q-q plot
of the observations and eight q-q plots with data simulated from a standard normal
distribution. It is then possible to visually compare the plot based on the observed
data to the simulated data and see whether the distribution of the observations is
"worse" than they should be.
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When we look at the nine plots then the original data are plotted in the frame with
the red border. Comparing the observed data to the simulated data the straight
line for the observed data is no worse than some of the simulated data, where the
normality assumption is known to hold. So we conclude here that we apparently
have no problem in assuming the normal distribution for these data.
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Method 3.42 The Normal q-q plot

The ordered observations x(1), . . . , x(n), called the sample quantiles, are plot-
ted versus a set of expected normal quantiles zp1 , . . . , zpn . If the points are
not systematically deviating from a line, we accept the normal distribution
assumption. The evaluation of this can be based on some simulations of a
sample of the same size.

The usual definition of p1, . . . , pn to be used for finding the expected normal
quantiles is

pi =
i− 0.5

n
, i = 1, . . . , n. (3-42)

Hence, simply the equally distanced points between 0.5/n and 1− 0.5/n.
This formula is suitable for samples with n > 10 and can be used in Python
by specifying qqplot(...,a=1/2). For samples with n ≤ 10, the formula

pi =
i− 3/8
n + 1/4

, i = 1, . . . , n, (3-43)

which can be used in Python by specifying qqplot(...,a=3/8), is pre-
ferred.

Example 3.43 Student heights

An example of how the expected normal quantile is calculated in Python can be
seen if we take the second smallest height 166. There are 2 observations ≤ 166,
so 166 = x(2) can be said to be the observed 2−3/8

10.25 = 0.1585 quantile (where we
use the formula for n ≤ 10). The 0.1585 quantile in the normal distribution is
stats.norm.ppf(0.1585,loc=0,scale=1) = −1.00 and the point (−1.00, 166) can
be seen on the q-q plot above.

3.1.9 Transformation towards normality

In the above we looked at methods to check for normality. When the data are
not normally distributed it is often possible to choose a transformation of the
sample, which improves the normality.

When the sample is positive with a long tail or a few large observations then the
most common choice is to apply a logarithmic transformation, log(x). The log-
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transformation will make the large values smaller and also spread the observa-
tions on both positive and negative values. Even though the log-transformation
is the most common there are also other possibilities such as

√
x or 1

x for making
large values smaller, or x2 and x3 for making large values larger.

When we have transformed the sample we can use all the statistical analyse we
want. It is important to remember that we are now working on the transformed
scale (e.g. the mean and its confidence interval is calculated for log(x)) and
perhaps it will be necessary to back-transform to the original scale.

Example 3.44 Radon in houses

In an American study the radon level was measured in a number of houses. The
Environmental Protection Agency’s recommended action level is ≥ 4 pCi/L. Here
we have the results for 20 of the houses (in pCi/L):

House 1 2 3 4 5 6 7 8 9 10
Radon level 2.4 4.2 1.8 2.5 5.4 2.2 4.0 1.1 1.5 5.4
House 11 12 13 14 15 16 17 18 19 20
Radon level 6.3 1.9 1.7 1.1 6.6 3.1 2.3 1.4 2.9 2.9

The sample mean, median and std. deviance is: x̄ = 3.04, Q2 = 2.45 and sx = 1.72.

We would like to see whether these observed radon levels could be thought of as
coming from a normal distribution. To do this we will plot the data:

# Reading in the sample
radon = np.array([2.4, 4.2, 1.8, 2.5, 5.4, 2.2, 4.0, 1.1, 1.5, 5.4,

6.3, 1.9, 1.7, 1.1, 6.6, 3.1, 2.3, 1.4, 2.9, 2.9])

# A histrogram and normal QQ-plot
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(radon, bins=6, edgecolor='black', color='blue', alpha=0.7)
ax1.set(title="Histogram of radon levels",xlabel="Radon level",ylabel="Frequency")
sm.qqplot(radon,line="q",a=1/2,ax=ax2)
ax2.set(title="Normal QQ-plot")
plt.tight_layout()
plt.show()
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From both plots we see that the data are positive and right skewed with a few large
observations. Therefore a log-transformation is applied:

# Transform using the natural logarithm
logRadon = np.log(radon)

# A histrogram and normal QQ-plot
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(logRadon, bins=4, edgecolor='black', color='blue', alpha=0.7)
ax1.set(title="Histogram of log(radon levels)",xlabel="log(radon level)",ylabel="Frequency")
sm.qqplot(logRadon,line="q",a=1/2,ax=ax2)
ax2.set(title="Normal QQ-plot")
plt.tight_layout()
plt.show()
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As we had expected the log-transformed data seem to be closer to a normal distri-
bution.
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We can now calculate the mean and 95% confidence interval for the log-transformed
data. However, we are perhaps not interested in the mean of the log-radon levels,
then we have to back-transform the estimated mean and confidence interval using
exp(x). When we take the exponential of the estimated mean, then this is no longer
a mean but a median on the original pCi/L scale. This gives a good interpretation,
as medians are useful when the distributions are not symmetric.

# A confidence interval and t-test
n = len(logRadon)
test = stats.ttest_1samp(logRadon,popmean=0)
print(test.statistic,test.pvalue,test.df)

7.793651876947492 2.46529449526264e-07 19

CI = stats.ttest_1samp(logRadon,popmean=0).confidence_interval(0.95)
print(CI)

ConfidenceInterval(low=np.float64(0.7054264972507451), high=np.float64(1.2234307147950183))

# Alternatively, the CI can be obtained as
CI = stats.t.interval(0.95,df=n-1,loc=logRadon.mean(),
scale=logRadon.std(ddof=1)/np.sqrt(n))
print(CI)

(np.float64(0.7054264972507451), np.float64(1.2234307147950183))

# Back transform to original scale, now we get the median!
# This is a special case: In the lognormal distribution,
# the median coincides with the geometric mean value.
print(np.exp(logRadon.mean()))

2.623288297019726

# And the confidence interval on the original scale
print(np.exp(CI))

[2.025 3.399]
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From the Python code we see that the mean log-radon level is 0.96 (95% CI: 0.71 to
1.22). On the original scale the estimated median radon level is 2.6 pCi/L (95% CI:
2.0 to 3.4).

Theorem 3.45 Transformations and quantiles

In general, the data transformations discussed in this section will preserve
the quantiles of the data. Or more precisely, if f is a data transformation
function (an increasing function), then

The pth quantile of f (Y) = f (The pth quantile of Y). (3-44)

The consequence of this theorem is that confidence limits on one scale trans-
form easily to confidence limits on another scale even though the transforming
function is non-linear.
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3.2 Learning from two-sample quantitative data

In this section the setup, where we can learn about the difference between the
means from two populations, is presented. This is very often a setup encoun-
tered in most fields of science and engineering: compare the quality of two
products, compare the performance of two groups, compare a new drug to a
placebo and so on. One could say, that it should be called a two-population
setup, since it is really two populations (or groups) which are compared by tak-
ing a sample from each, however it is called a two-sample setup (probably it
sounds better to say).

First, the two-sample setup is introduced with an example and then methods
for confidence intervals and tests are presented.

Example 3.46 Nutrition study

In a nutrition study the aim is to investigate if there is a difference in the energy
usage for two different types of (moderately physically demanding) work. In the
study, the energy usage of 9 nurses from hospital A and 9 (other) nurses from hos-
pital B have been measured. The measurements are given in the following table in
mega Joule (MJ):

Hospital A Hospital B
7.53 9.21
7.48 11.51
8.08 12.79
8.09 11.85

10.15 9.97
8.40 8.79

10.88 9.69
6.13 9.68
7.90 9.19

Our aim is to assess the difference in energy usage between the two groups of nurses.
If µA and µB are the mean energy expenditures for nurses from hospital A and B,
then the estimates are just the sample means

µ̂A = x̄A = 8.293,

µ̂B = x̄B = 10.298.

To assess the difference in means, δ = µB − µA, we could consider the confidence
interval for δ = µB − µA. Clearly, the estimate for the difference is the difference of
the sample means, δ̂ = µ̂B − µ̂A = 2.005.
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The 95% confidence interval is

2.005± 1.412 = [0.59, 3.42],

which spans the mean differences in energy expenditure that we find acceptable
based on the data. Thus we do not accept that the mean difference could be zero.

The interval width, given by 1.41, as we will learn below, comes from a simple com-
putation using the two sample standard deviations, the two sample sizes and a t-
quantile.

We can also compute a p-value to measure the evidence against the null hypothesis
that the mean energy expenditures are the same. Thus we consider the following
null hypothesis

H0 : δ = 0.

Since the 95% confidence interval does not cover zero, we already know that the p-
value for this significance test will be less than 0.05. In fact it turns out that the
p-value for this significance test is 0.0083 indicating strong evidence against the
null hypothesis that the mean energy expenditures are the same for the two nurse
groups. We therefore have strong evidence that the mean energy expenditure of
nurses from hospital B is higher than that of nurses from hospital A.

This section describes how to compute the confidence intervals and p-values in such
two-sample setups.

3.2.1 Comparing two independent means - confidence Interval

We assume now that we have a sample x1, . . . , xn taken at random from one
population with mean µ1 and variance σ2

1 and another sample y1, . . . , yn taken
at random from another population with mean µ2 and variance σ2

2 .
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Method 3.47 The two-sample confidence interval for µ1 − µ2

For two samples x1, . . . , xn and y1, . . . , yn the 100(1− α)% confidence inter-
val for µ1 − µ2 is given by

x̄− ȳ± t1−α/2 ·
√

s2
1

n1
+

s2
2

n2
, (3-45)

where t1−α/2 is the (1− α/2)-quantile from the t-distribution with ν degrees
of freedom given from Equation (3-50)

ν =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

. (3-46)

Note how the t-quantile used for the confidence interval is exactly what we
called the critical value above.

Example 3.48 Nutrition study

Let us find the 95% confidence interval for µB − µA. Since the relevant t-quantile is,
using ν = 15.99,

t0.975 = 2.120,

the confidence interval becomes

10.298− 8.293± 2.120 ·
√

2.0394
9

+
1.954

9
,

which then gives the result as also seen above

[0.59, 3.42].

3.2.2 Comparing two independent means - hypothesis test

We describe the setup as having a random sample from each of two different
populations, each described by a mean and a variance:
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• Population 1: has mean µ1, and variance σ2
1

• Population 2: has mean µ2, and variance σ2
2

The interest lies in the comparisons of the means.

Method 3.49 The (Welch) two-sample t-test statistic

When considering the null hypothesis about the difference between the
means of two independent samples

δ = µ2 − µ1,
H0 : δ = δ0,

(3-47)

the (Welch) two-sample t-test statistic is

tobs =
(x̄1 − x̄2)− δ0√
s2

1/n1 + s2
2/n2

. (3-48)

Theorem 3.50 The distribution of the (Welch) two-sample statistic

The (Welch) two-sample statistic seen as a random variable

T =
(X̄1 − X̄2)− δ0√

S2
1/n1 + S2

2/n2

, (3-49)

approximately, under the null hypothesis, follows a t-distribution with ν

degrees of freedom, where

ν =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

, (3-50)

if the two population distributions are normal or if the two sample sizes are
large enough.

We can now, based on this, express the full hypothesis testing procedures for
the two-sample setting:
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Method 3.51 The level α two-sample t-test

1. Compute the test statistic using Equation (3-48) and ν from Equa-
tion (3-50)

tobs =
(x̄1 − x̄2)− δ0√
s2

1/n1 + s2
2/n2

and ν =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

2. Compute the evidence against the null hypothesisa

H0 : µ1 − µ2 = δ0,

vs. the alternative hypothesis

H1 : µ1 − µ2 6= δ0,

by the

p-value = 2 · P(T > |tobs|),

where the t-distribution with ν degrees of freedom is used

3. If p-value < α: we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±t1−α/2:
if |tobs| > t1−α/2 we reject H0, otherwise we accept H0

aWe are often interested in the test where δ0 = 0

An assumption that often is applied in statistical analyses of various kinds is
that of the underlying variability being of the same size in different groups or
at different conditions. The assumption is rarely crucial for actually carrying
out some good statistics, but it may indeed make the theoretical justification for
what is done more straightforward, and the actual computational procedures
also may become more easily expressed. We will see in later chapters how this
comes in play. Actually, the methods presented above do not make this as-
sumption, which is nice. The fewer assumptions needed the better, obviously.
Assumptions are problematic in the sense, that they may be questioned for par-
ticular applications of the methods.
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However, below we will present a version of the two-sample t-test statistic, that
actually is adapted to such an assumption, namely assuming that the two pop-
ulation variances are the same: σ2

1 = σ2
2 . We present it here not because we

really need it, we will use the above in all situations. But the version below
will appear and be used many places and it also bears some nice relations to
later multi-group analysis (Analysis of Variance (ANOVA)) that we will get to
in Chapter 8.

If we believe in the equal variance assumption it is natural to compute a single
joint – called the pooled – estimate of the variance based on the two individual
variances:

Method 3.52 The pooled two-sample estimate of variance

Under the assumption that σ2
1 = σ2

2 the pooled estimate of variance is the
weighted average of the two sample variances

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

. (3-51)

Note that when there is the same number of observations in the two groups,
n1 = n2, the pooled variance estimate is simply the average of the two sample
variances. Based on this the so-called pooled two-sample t-test statistic can be
given:

Method 3.53 The pooled two-sample t-test statistic

When considering the null hypothesis about the difference between the
means of two independent samples

δ = µ1 − µ2,
H0 : δ = δ0.

(3-52)

the pooled two-sample t-test statistic is

tobs =
(x̄1 − x̄2)− δ0√
s2

p/n1 + s2
p/n2

. (3-53)
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And the following theorem would form the basis for hypothesis test procedures
based on the pooled version:

Theorem 3.54 The distribution of the pooled two-sample t-test
statistic

The pooled two-sample statistic seen as a random variable:

T =
(X̄1 − X̄2)− δ0√
S2

p/n1 + S2
p/n2

. (3-54)

follows, under the null hypothesis and under the assumption that σ2
1 = σ2

2 ,
a t-distribution with n1 + n2 − 2 degrees of freedom if the two population
distributions are normal.

A little consideration will show why choosing the Welch-version as the ap-
proach to always use makes good sense: First of all if s2

1 = s2
2 the Welch and the

Pooled test statistics are the same. Only when the two variances become really
different the two test-statistics may differ in any important way, and if this is
the case, we would not tend to favour the pooled version, since the assumption
of equal variances appears questionable then.

Only for cases with a small sample sizes in at least one of the two groups the
pooled approach may provide slightly higher power if you believe in the equal
variance assumption. And for these cases the Welch approach is then a some-
what cautious approach.

Example 3.55 Nutrition study

Let us consider the nurses example again, and test the null hypothesis expressing
that the two groups have equal means

H0 : δ = µA − µB = 0,

versus the alternative

H0 : δ = µA − µB 6= 0,

using the most commonly used significance level, α = 0.05. We follow the steps
of Method 3.51: we should first compute the test-statistic tobs and the degrees of
freedom ν. These both come from the basic computations on the data:
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# Load the two samples
xA = np.array([7.53, 7.48, 8.08, 8.09, 10.15, 8.4, 10.88, 6.13, 7.9])
xB = np.array([9.21, 11.51, 12.79, 11.85, 9.97, 8.79, 9.69, 9.68, 9.19])

# Summary statistics
print(xA.mean(),xB.mean())

8.293333333333335 10.297777777777776

print(xA.var(ddof=1),xB.var(ddof=1))

2.0394000000000005 1.954044444444444

print(len(xA),len(xB))

9 9

So

tobs =
10.298− 8.293√

2.0394/9 + 1.954/9
= 3.01,

and

ν =

( 2.0394
9 + 1.954

9

)2

(2.0394/9)2

8 + (1.954/9)2

8

= 15.99.

Or the same done in Python by ”manual” expression:
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# Keep the summary statistics
ms = np.array([xA.mean(),xB.mean()])
vs = np.array([xA.var(ddof=1),xB.var(ddof=1)])
ns = np.array([len(xA),len(xB)])

# The observed statistic
t_obs = (ms[1]-ms[0])/np.sqrt(vs[0]/ns[0]+vs[1]/ns[1])

# The degrees of freedom
nu = ((vs[0]/ns[0]+vs[1]/ns[1])**2)/((vs[0]/ns[0])**2/(ns[0]-1)
+(vs[1]/ns[1])**2/(ns[1]-1))

# Print the result
print(t_obs)

3.009133495521211

print(nu)

15.992693827602634

Next step is then to find the p-value

p-value = 2 · P(T > |tobs|) = 2P(T > 3.01) = 2 · 0.00415 = 0.0083,

where we use Python to find the probability P(T > 3.01) based on a t-distribution
with ν = 15.99 degrees of freedom:

# The probability of observing a value greater that t_obs
print(1 - stats.t.cdf(t_obs,df=nu))

0.004161369978658014

To complete the hypothesis test, we compare the p-value with the given α-level, in
this case α = 0.05, and conclude:

Since the p-value is less than α we reject the null hypothesis, and we have
sufficient evidence for concluding: the two nurse groups have on average dif-
ferent energy usage work levels. We have shown this effect to be statistically
significant.

In spite of a pre-defined α-level (whoever gave us that), it is always valuable to
consider at what other α-levels the hypothesis would be rejected/accepted. Or in
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different words, interpret the size of the p-value using Table 3.1 and we thus sharpen
the statement a little:

Since the p-value in this case is between 0.001 and 0.01 conclude: there is
a strong evidence against equality of the two population energy usage means
and it is found that the mean is significantly higher on Hospital B compared to
Hospital A.

The last part, that the mean is higher on Hospital B, can be concluded because it is
rejected that they are equal and x̄B > x̄A and we can thus add this to the conclusion.

Finally, the t-test computations are actually directly provided by the ttest_ind-
function from the SciPy package using the two data input vectors

# Use the automatic function for a t-test
test = stats.ttest_ind(xB,xA,equal_var=False)
tobs = test.statistic
pvalue = test.pvalue
df = test.df
print(tobs,pvalue,df)

3.009133495521211 0.00832273995731614 15.992693827602634

stats.ttest_ind(xB,xA,equal_var=False).confidence_interval(0.95)

ConfidenceInterval(low=np.float64(0.5922803841924627), high=np.float64(3.4166085046964207))

Note, how the default choices of the Python-function compare to our exposition:

• Default test version: the pooled test (assuming equal variances)

• Default α-level: 0.05

• Default ”direction version”: the two-sided (or non-directional) alternative hy-
pothesis (see Section 3.1.7 about other alternative hypotheses)

Actually, the final rejection/acceptance conclusion based on the default (or chosen)
α-level is not given by Python.

In the ttest_ind results the α-level is used for the given confidence interval for the
mean difference of the two populations, to be interpreted as: we accept that the
true difference in mean energy levels between the two nurse groups is somewhere
between 0.6 and 3.4.
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Remark 3.56

Often ”degrees of freedom” are integer values, but in fact t-distributions
with non-integer valued degrees of freedom are also well defined. The
ν = 15.99 t-distribution (think of the density function) is a distribution in
between the ν = 15 and the ν = 16 t-distributions. Clearly it will indeed be
very close to the ν = 16 one.

We did not in the example above use Step 4. of Method 3.51, which can be
called the critical value approach. In fact this approach is directly linked to
the confidence interval in the sense that one could make a rapid conclusion
regarding rejection or not by looking at the confidence interval and checking
whether the hypothesized value is in the interval or not. This would correspond
to using the critical value approach.

Example 3.57 Nutrition study

In the nutrition example above, we can see that 0 is not in the confidence interval so
we would reject the null hypothesis. Let us formally use Step 4 of Method 3.51 to
see how this is exactly the same: the idea is that one can even before the experiment
is carried out find the critical value(s), in this case:

The 5% critical values = ±t0.975 = ±2.120,

where the quantile is found from the t-distribution with ν = 15.99 degrees of free-
dom:

# The critical value for the test
print(stats.t.ppf(0.975,df=nu))

2.119984011855833

Now we conclude that since the observed t-statistic tobs = 3.01 is beyond the crit-
ical values (either larger than 2.120 or smaller than −2.120) the null hypothesis is
rejected, and further since it was higher, that µA − µB > 0 hence µB > µA.

Example 3.58 Overlapping confidence intervals?

A commonly encountered way to visualize the results of a two-sample comparison
is to use a bar plot of the means together with some measure of uncertainty, either
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simply the standard errors of the means or the 95% confidence intervals within each
group:

# The confidence intervals
CIA = stats.ttest_1samp(xA,popmean=0).confidence_interval(0.95)
CIB = stats.ttest_1samp(xB,popmean=0).confidence_interval(0.95)

# Barplots with error bars
fig, ax = plt.subplots(1, 1)
ax.bar(x=[0,1],height=[xA.mean(),xB.mean()],
yerr=[(CIA[1]-CIA[0])/2,(CIB[1]-CIB[0])/2],capsize=20,color=("r","g"))
ax.set(xlabel="Hospital",ylabel="Energy usage")
ax.set_xticks([0,1],("A","B"))
plt.tight_layout()
plt.show()
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Here care must taken in the interpretation of this plot: it is natural, if your main
aim is a comparison of the two means, to immediately visually check whether the
shown error bars, in this case the confidence intervals, overlap or not, to make a con-
clusion about group difference. Here they actually just overlap - could be checked
by looking at the actual CIs:
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# The confidence intervals
print(CIA)

ConfidenceInterval(low=np.float64(7.195617231957511), high=np.float64(9.391049434709158))

print(CIB)

ConfidenceInterval(low=np.float64(9.223278703268573), high=np.float64(11.37227685228698))

And the conclusion would (incorrectly) be that the groups are not statistically dif-
ferent. However, remind that we found above that the p-value = 0.008323, so we
concluded that there was strong evidence of a mean difference between the two
nurse groups.

The problem of the ”overlapping CI interpretation” illustrated in the example
comes technically from the fact that standard deviations are not additive but
variances are

σ(X̄A−X̄B)
6= σX̄A

+ σX̄B
,

V(X̄A − X̄B) = V(X̄A) + V(X̄B).
(3-55)

The latter is what the confidence interval for the mean difference µA− µB is using
and what should be used for the proper statistical comparison of the means.
The former is what you implicitly use in the ”overlapping CI interpretation
approach”.

The proper standard deviation (sampling error) of the sample mean difference due
to Pythagoras, is smaller than the sum of the two standard errors: assume that
the two standard errors are 3 and 4. The sum is 7, but the square-root of the
squares is

√
32 + 42 = 5. Or more generally

σ(X̄A−X̄B)
< σX̄A

+ σX̄B
. (3-56)

So we can say the following:
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Remark 3.59

When interpreting two (and multi-) independent samples mean bar plots
with added confidence intervals:

When two CIs do NOT overlap: The two groups are significantly different

When two CIs DO overlap: We do not know from this what the conclusion
is (but then we can use the presented two-sample test method)

One can consider other types of plots for visualizing (multi)group differences.
We will return to this in Chapter 8 on the multi-group data analysis, the so-
called Analysis of Variance (ANOVA).

3.2.3 The paired design and analysis

Example 3.60 Sleeping medicine

In a study the aim is to compare two kinds of sleeping medicine A and B. 10 test
persons tried both kinds of medicine and the following results are obtained, given
in prolonged sleep length (in hours) for each medicine type:

Person A B D = B− A
1 +0.7 +1.9 +1.2
2 -1.6 +0.8 +2.4
3 -0.2 +1.1 +1.3
4 -1.2 +0.1 +1.3
5 -1.0 -0.1 +0.9
6 +3.4 +4.4 +1.0
7 +3.7 +5.5 +1.8
8 +0.8 +1.6 +0.8
9 0.0 +4.6 +4.6
10 +2.0 +3.4 +1.4

Note that this is the same experiment as already treated in Example 3.21. We now
in addition see the original measurements for each sleeping medicine rather than
just individual differences given earlier. And we saw that we could obtain the rele-
vant analysis (p-value and confidence interval) by a simple call to the ttest_1samp
function using the 10 differences:
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# Read the samples
x1 = np.array([0.7, -1.6, -0.2, -1.2, -1.0, 3.4, 3.7, 0.8, 0.0, 2.0])
x2 = np.array([1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4])

# Take the differences
dif = x2 - x1

# t-test on the differences
test = stats.ttest_1samp(dif,popmean=0)
print(test.statistic,test.pvalue,test.df)

4.671645978656774 0.0011658764685528319 9

stats.ttest_1samp(dif,popmean=0).confidence_interval(0.95)

ConfidenceInterval(low=np.float64(0.8613337442036719), high=np.float64(2.4786662557963277))

The example shows that this section actually could be avoided, as the right way
to handle this so-called paired situation is to apply the one-sample theory and
methods from Section 3.1 on the differences

di = xi − yi for i = 1, 2, ..., n. (3-57)

Then we can do all relevant statistics based on the mean d̄ and the variance s2
d

for these differences.

The reason for having an entire section devoted to the paired t-test is that it is
an important topic for experimental work and statistical analysis. The paired
design for experiments represents an important generic principle for doing ex-
periments as opposed to the un-paired/independent samples design, and these
important basic experimental principles will be important also for multi-group
experiments and data, that we will encounter later in the material.
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Example 3.61 Sleeping medicine

And similarly in Python, they have prepared way to do the paired analysis directly
on the two-sample data:

# Give both samples, but make paired t-test
test = stats.ttest_rel(x2,x1)
print(test.statistic,test.pvalue,test.df)

4.671645978656774 0.0011658764685528319 9

stats.ttest_rel(x2,x1).confidence_interval(0.95)

ConfidenceInterval(low=np.float64(0.8613337442036719), high=np.float64(2.4786662557963277))

Paired vs. completely randomized experiments

An experiment like the one exemplified here where two treatments are investi-
gated can essentially be performed in two different ways:

Completely Randomized (independent samples) 20 patients are used and com-
pletely at random allocated to one of the two treatments (but usually mak-
ing sure to have 10 patients in each group). So: different people in the
different groups.

Paired (dependent samples) 10 patients are used, and each of them tests both
of the treatments. Usually this will involve some time in between treat-
ments to make sure that it becomes meaningful, and also one would typ-
ically make sure that some patients do A before B and others B before A.
(and doing this allocation at random). So: the same people in the different
groups.

Generally, one would expect that whatever the experiment is about and which
observational units are involved (people, patients, animals) the outcome will
be affected by the properties of each individual – the unit. In the example,
some people will react positively to both treatments because they generally are
more prone to react to sleeping medicines. Others will not respond as much
to sleeping medicine. And these differences, the person-to-person variability,
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will give a high variance for the Welch independent samples t-test used for
the independent samples case. So generally, one would often prefer to carry
out a paired experiment, where the generic individual variability will not blur
the signal – one can say that in a paired experiment, each individual serves as
his/her own control – the effect of the two treatments are estimated for each
individual. We illustrate this by analysing the example data wrongly, as if they
were the results of a completely randomized experiment on 20 patients:

Example 3.62 Sleeping medicine - WRONG analysis

What happens when applying the wrong analysis:

# WRONG analysis
test = stats.ttest_ind(x2,x1,equal_var=False)
print(test.statistic,test.pvalue,test.df)

1.9334408348617207 0.06915652250932773 17.900065494971773

Note how the p-value here is around 0.07 as opposed to the 0.001 from the proper
paired analysis. Also the confidence interval is much wider. Had we done the ex-
periment with 20 patients and gotten the results here, then we would not be able
to detect the difference between the two medicines. What happened is that the in-
dividual variabilities seen in each of the two groups now, incorrectly so, is being
used for the statistical analysis and these are much larger than the variability of the
differences:

# The sample variances of each sample and of the differences
print(x1.var(ddof=1))

3.4515555555555557

print(x2.var(ddof=1))

4.009

print((x2-x1).var(ddof=1))

1.2778888888888886
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3.2.4 Validation of assumptions with normality investigations

For normality investigations in two-sample settings we use the tools given for
one-sample data, presented in Section 3.1.8. For the paired setting, the investi-
gation would be carried out for the differences. For the independent case the
investigation is carried out within each of the two groups.
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3.3 Planning a study: wanted precision and power

Experiments and observational studies are always better when they are care-
fully planned. Good planning covers many features of the study. The obser-
vations must be sampled appropriately from the population, reliable measure-
ments must be made and the study must be "big enough" to be able to detect
an effect of interest. And if the study becomes too big, effects of little practical
interest may become statistically significant, and (some of) the money invested
in the study will be wasted. Sample size is important for economic reasons: an
oversized study uses more resources than necessary, this could be both finan-
cial but also ethical if subjecting objects to potentially harmful treatments, an
undersized study can be wasted if it is not able to produce reliable results.

Sample size is very important to consider before a study is carried out.

3.3.1 Sample Size for wanted precision

One way of calculating the required sample size is to work back from the wanted
precision. From (3-10) we see that the confidence interval is symmetric around
x̄ and the half width of the confidence interval (also called the margin of error
(ME)) is given as

ME = t1−α/2
σ√
n

. (3-58)

Here t1−α/2 is the (1− α/2) quantile from the t-distribution with n− 1 degrees
of freedom. This quantile depends on both α and the sample size n, which is
what we want to find.

The sample size now affects both n and t1−α/2, but if we have a large sample
(e.g. n ≥ 30) then we can use the normal approximation and replace t1−α/2 by
the quantile from the normal distribution z1−α/2.

In the expression for ME in Equation (3-58) we also need σ, the standard devi-
ation. An estimate of the standard deviation would usually only be available
after the sample has been taken. Instead we use a guess for σ possibly based on
a pilot study or from the literature, or we could use a scenario based choice (i.e.
set σ to some value which we think is reasonable).

For a given choice of ME it is now possible to isolate n in Equation (3-58) (with
the normal quantile inserted instead of the t-quantile):
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Method 3.63 The one-sample CI sample size formula

When σ is known or guessed at some value, we can calculate the sample
size n needed to achieve a given margin of error, ME, with probability 1− α

as

n =
(z1−α/2 · σ

ME

)2
. (3-59)

Example 3.64 Student heights

In Example 3.1 we inferred using a sample of heights of 10 students and found the
sample mean height to be x̄ = 178 and standard deviation s = 12.21. We can now
calculate how many students we should include in a new study, if we want a margin
of error of 3 cm with confidence 95%. Using the standard deviation from the pilot
study with 10 students as our guess we can plug into Method 3.63

n =

(
1.96 · 12.21

3

)2

= 63.64.

These calculations show that we should include 64 students, the nearest integer to
63.64.

The formula and approach here has the weakness that it only gives an “ex-
pected” behaviour of a coming experiment - at first reading this may seem good
enough, but if you think about it, it means that approximately half of the times
the actual width will be smaller and the other half, it will be larger than ex-
pected. If the uncertainty variability is not too large it might not be a big prob-
lem, but nothing in the approach helps us to know whether it is good enough
– we cannot guarantee a minimum accuracy with a certain probability. A more
advanced approach, that will help us control more precisely that a future exper-
iment/study will meet our needs, is presented now.

3.3.2 Sample size and statistical power

Another way of calculating the necessary sample size is to use the power of the
study. The statistical power of a study is the probability of correctly rejecting H0 if H0
is false. The relations between Type I error, Type II error and the power are seen
in the table below.
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Figure 3.2: The mean µ0 is the mean under H0 and µ1 the mean under H1. When
µ1 increases (i.e. moving away from µ0) so does the power (the yellow area on
the graph).

Reject H0 Fail to reject H0
H0 is true Type I error (α) Correct acceptance of H0
H0 is false Correct rejection of H0 (Power) Type II error (β)

The power has to do with the Type II error β, the probability of wrongly accept-
ing H0, when H0 actually is false. We would like to have high power (low β), but
it is clear that this will be impossible for all possible situations: it will depend
on the scenario for the potential mean – small potential effects will be difficult
to detect (low power), whereas large potential effects will be easier to detect
(higher power), as illustrated in Figure 3.2. In the left plot we have the mean
under H0 (µ0) close to the mean under the alternative hypothesis (µ1) making
it difficult to distinguish between the two and the power becomes low. In the
right plot µ0 and µ1 are further apart and the statistical power is much higher.

The power approach to calculating the sample size first of all involves specify-
ing the null hypothesis H0. Then the following four elements must be speci-
fied/chosen:

• The significance level α of the test (in Python: alpha)

• A difference in the mean that you would want to detect, delta

• The standard deviation σ (sd in the code)

• The wanted power (1− β) (in Python: power)

When these values have been decided, it is possible to calculate the necessary
sample size, n. In the one-sided,one-sample t-test there is an approximate closed
form for n and this is also the case in some other simple situations. Python offers
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easy to use functions for this not based on the approximate normal distribution
assumption, but using the more proper t-distributions. In more complicated
settings even it is possible to do some simulations to find the required sample
size.

Method 3.65 The one-sample sample size formula

For the one-sample t-test for given α, β and σ

n =

(
σ

z1−β + z1−α/2

(µ0 − µ1)

)2

,

where µ0 − µ1 is the difference in means that we would want to detect and
z1−β, z1−α/2 are quantiles of the standard normal distribution.

Example 3.66 Sample size as function of power

The following figure shows how the sample size increases with increasing power
using the formula in 3.65. Here we have chosen σ = 1 and α = 0.05. Delta is
µ0 − µ1.
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Example 3.67 Student heights

If we return to the example with student heights 3.1, we might want to collect data
for a new study to test the hypothesis about the mean height

H0 : µ = 180

Against the alternative

H1 : µ 6= 180

This is the first step in the power approach. The following four elements then are:

• Set the significance level α equal to 5%

• Specify that we want to be able to detect a difference of 4 cm

• We will use the standard deviation 12.21 from the study with 10 subjects as
our guess for σ

• We want a power of 80%

Using the formula in 3.65 we get

n =

(
12.21 · 0.84 + 1.96

4

)2

= 73.05.

So we would need to include 74 students.
We could also use a Python-function for power and sample size based on the t-
distributions:

# The sample size for power=0.80
delta = 4
sd = 12.21
alpha = 0.05
power = 0.8
smp.TTestPower().solve_power(effect_size=delta/sd, alpha=alpha, power=power)

75.07715049712685

From the calculations in Python avoiding the normal approximation the required
sample size is 76 students, very close to the number calculated by hand using the
approximation above.

In fact the Python-function is really nice in the way that it could also be used to find
the power for a given sample size, e.g. n = 50 (given all the other aspects):
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delta = 4
sd = 12.21
nobs = 50
alpha = 0.05
smp.TTestPower().solve_power(effect_size=delta/sd, nobs=nobs, alpha=alpha)

np.float64(0.6220915188555853)

This would only give the power 0.62 usually considered too low for a relevant effect
size.

And finally the Python-function can tell us what effect size and delta that could be
detected by, say, n = 50, and a power of 0.80:

nobs = 50
alpha = 0.05
power = 0.80
sd = 12.21
effect = smp.TTestPower().solve_power(nobs=nobs, alpha=alpha, power=power)
delta = effect*sd
print(delta)

4.935074496518317

So with n = 50 only a delta as big as 4.9 would be detectable with probability 0.80.

To summarize: if we know/define 4 out the 5 values: significance level, power
(1− β), n, delta, and σ, we can find the 5’th. In the Python-function, the argu-
ments are called alpha, power, nobs, and effect_size, where effect_size is
delta/σ.

In the practical planning of a study, often a number of scenario-based values of
delta and σ are used to find a reasonable size of the study.

3.3.3 Power/Sample size in two-sample setup

For power and sample size one can generalize the tools presented for the one-
sample setup in the previous section. We illustrate it here by an example of how
to work with the inbuilt Python-function:
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Example 3.68 Two-sample power and sample size computations
in Python

We consider the two-sample hypothesis test

H0 : µ1 = µ2,

H1 : µ1 6= µ2

# Finding the power of detecting a group difference of 2
# with sigma=1 for n=10
delta = 2
sd = 1
nobs = 10
alpha = 0.05
smp.TTestIndPower().solve_power(effect_size=delta/sd, nobs1=nobs, alpha=alpha, ratio=1.0)

np.float64(0.9881789691948746)

# Finding the sample size for detecting a group difference of 2
# with sigma=1 and power=0.9
delta = 2
sd = 1
alpha = 0.05
power = 0.90
smp.TTestIndPower().solve_power(effect_size=delta/sd, alpha=alpha, power=power, ratio=1.0)

6.386755384175011

# Finding the detectable effect size (delta)
# with sigma=1, n=10 and power=0.9
nobs = 10
alpha = 0.05
power = 0.90
sd = 1
effect = smp.TTestIndPower().solve_power(nobs1=nobs, alpha=alpha, power=power, ratio=1.0)
delta = effect*sd
print(delta)

1.5336931237722076
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Note that we now use the function TTestIndPower, which uses the arguments nobs1
and ratio to specify the number of observations in the two samples.
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Chapter 4

Simulation Based Statistics

4.1 Probability and Simulation

4.1.1 Introduction

One of the really big gains for statistics and modelling of random phenomena,
provided by computer technology during the last decades, is the ability to sim-
ulate random systems on the computer, as we have already seen much in use
in Chapter 2. This provides possibilities to obtain results that otherwise from a
mathematical analytical point of view would be impossible to calculate. And,
even in cases where the highly educated mathematician/physicist might be able
to find solutions, simulation is a general and simple calculation tool allowing
solving complex problems without a need for deep theoretical insight.

An important reason for including this subject in an introductory statistics course,
apart from using it as a pedagogical tool to aide the understanding of random
phenomena, is the fact that the methods we are usually introducing in basic
statistics are characterized by relying on one of two conditions:

1. The original data population density is assumed to be a normal distribu-
tion

2. Or: The sample size n is large enough to make this assumption irrelevant
for what we do

And in real settings it may be challenging to know for sure whether any of these
two are really satisfied, so to what extend can we trust the statistical conclusions
that we make using our basic tools, as e.g. the one- and two-sample statistical
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methods presented in Chapter 3. And how should we do the basic statistical
analysis if we even become convinced that none of these two conditions are ful-
filled? Statistical data analysis based on simulation tools is a valuable tool to
complete the tool box of introductory statistics. It can be used to do statistical
computing for other features than just means, and for other population distri-
butions than the normal. It can also be used to investigate whether some of our
assumptions appear reasonable. We already saw an example of this in relation
to the qq-plots in Chapter 3.1.9.

In fact, it will become clear that the simulation tools presented here will make
us rapidly able to perform statistical analysis that goes way beyond what histor-
ically has been introduced in basic statistics classes or textbooks. Unfortunately,
the complexity of real life engineering applications and data analysis challenges
can easily go beyond the settings that we have time to cover within an intro-
ductory exposition. With the general simulation tool in our tool box, we have
a multi-tool that can be used for (and adapted to) basically almost any level of
complexity that we will meet in our future engineering activity.

The classical statistical practice would be to try to ensure that the data we’re
analyzing behaves like a normal distribution: symmetric and bell-shaped his-
togram. In Chapter 3 we also learned that we can make a normal q-q plot to
verify this assumption in practice, and possibly transform the data to get them
closer to being normal. The problem with small samples is that it even with
these diagnostic tools can be difficult to know whether the underlying distribu-
tion really is ”normal” or not.

And in some cases the assumption of normality after all simply may be obvi-
uosly wrong. For example, when the response scale we work with is far from
being quantitative and continuous - it could be a scale like ”small”, ”medium”
and ”large” - coded as 1, 2 and 3. We need tools that can do statistical analy-
sis for us WITHOUT the assumption that the normal distribution is the right
model for the data we observe and work with.

Traditionally, the missing link would be covered by the so-called non-parametric
tests. In short this is a collection of methods that make use of data at a more
coarse level, typically by focusing on the rank of the observations instead of the
actual values of the observations. So in a paired t-test setup, for example, one
would just count how many times the observations in one sample is bigger than
in the other – instead of calculating the differences. In that way you can make
statistical tests without using the assumption of an underlying normal distribu-
tion. There are a large number of such non-parametric tests for different setups.
Historically, before the computer age, it was the only way to really handle such
situations in practice. These tests are all characterized by the fact that they are
given by relatively simple computational formulas which in earlier times easily
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could be handled. For small sample statistics with questionable distributional
settings, these tools maintain to offer a robust set of basic statistical procedures.

The simulation based methods that we now present instead have a couple of
crucial advantages to the traditional non-parametric methods:

• Confidence intervals are much easier to achieve

• They are much easier to apply in more complex situations

• They scale better to modern time big data analysis

4.1.2 Simulation as a general computational tool

Basically, the strength of the simulation tool is that one can compute arbitrary
functions of random variables and their outcomes. In other words one can find
probabilities of complicated outcomes. As such, simulation is really not a statis-
tical tool, but rather a probability calculus tool. However, since statistics essen-
tially is about analysing and learning from real data in the light of certain proba-
bilities, the simulation tool indeed becomes of statistical importance, which we
will exemplify very specifically below. Before starting with exemplifying the
power of simulation as a general computational tool, we refer to the introduc-
tion to simulation in Chapter 2 – in particular read first Section 2.6, Example ??
and thereafter Section 2.6.

Example 4.1 Rectangular plates

A company produces rectangular plates. The length of plates (in meters), X is as-
sumed to follow a normal distribution N(2, 0.012) and the width of the plates (in
meters), Y are assumed to follow a normal distribution N(3, 0.022). We’re hence
dealing with plates of size 2× 3 meters, but with errors in both length and width.
Assume that these errors are completely independent. We are interested in the area
of the plates which of course is given by A = XY. This is a non-linear function of X
and Y, and actually it means that we, with the theoretical tools we presented so far
in the material, cannot figure out what the mean area really is, and not at all what
the standard deviation would be in the areas from plate to plate, and we would defi-
nitely not know how to calculate the probabilities of various possible outcomes. For
example, how often such plates have an area that differ by more than 0.1 m2 from
the targeted 6 m2? One statement summarizing all our lack of knowledge at this
point: we do not know the probability distribution of the random variable A and
we do not know how to find it! With simulation, it is straightforward: one can find
all relevant information about A by just simulating the X and Y a high number of
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times, and from this compute A just as many times, and then observe what happens
to the values of A. The first step is then given by:

# Number of simulations
k = 10000

# Simulate X and Y, then A
X = stats.norm.rvs(loc=2,scale=0.01,size=k)
Y = stats.norm.rvs(loc=3,scale=0.02,size=k)
A = X * Y

The Python object A now contains 10.000 observations of A. The expected value
and the standard deviation for A are simply found by calculating the average and
standard deviation for the simulated A-values:

# The mean and std. deviation of the simulated values
print(A.mean())

6.000707518857636

print(A.std(ddof=1))

0.050187379229233574

and the desired probability, P(|A− 6| > 0.1) = 1− P(5.9 ≤ A ≤ 6.1) is found by
counting how often the incident actually occurs among the k outcomes of A:

1*(abs(A-6) > 0.1).mean()

np.float64(0.0454)

The code abs(A-6) > 0.1 creates an array with values TRUE or FALSE depending on
whether the absolute value of A− 6 is greater than 0.1 or not. When you multiply
by 1 the TRUE is automatically translated into 1 and FALSE automatically translated
to 0. To find the probability, we sum these binary values and divide by number
of simulations k. This is equivalent to finding the mean of the binary values, and
therefore we use the mean method.
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Note, that if you do this yourself without using the same seed value you will not
get exactly the same result. It is clear that this simulation uncertainty is something
we must deal with in practice. The size of this will depend on the situation and
on the number of simulations k. We can always get a first idea of it in a specific
situation simply by repeating the calculation a few times and note how it varies.
Indeed, one could then formalize such an investigation and repeat the simulation
many times, to get an evaluation of the simulation uncertainty. We will not pursue
this further here. When the target of the computation is in fact a probability, as in the
latter example here, you can alternatively use standard binomial statistics, which is
covered in Chapter 2 and Chapter 7. For example, with k = 100000 the uncertainty

for a calculated proportion of around 0.044 is given by:
√

0.044(1−0.044)
100000 = 0.00065. Or

for example, with k = 10000000 the uncertainty is 0.000065. The result using such
a k was 0.0455 and because we’re a bit unlucky with the rounding position we can
in practice say that the exact result rounded to 3 decimal places are either 0.045 or
0.046. In this way, a calculation which is actually based on simulation is turned into
an exact one in the sense that rounded to 2 decimal places, the result is simply 0.05.

4.1.3 Propagation of error

Within chemistry and physics one may speak of measurement errors and how
measurement errors propagate/accumulate if we have more measurements and/or
use these measurements in subsequent formulas/calculations. First of all: The
basic way to ”measure an error”, that is, to quantify a measurement error is by
means of a standard deviation. As we know, the standard deviation expresses
the average deviation from the mean. It is clear it may happen that a measur-
ing instrument also on average measures wrongly (off the target). This is called
”bias”, but in the basic setting here, we assume that the instrument has no bias.

Hence, reformulated, an error propagation problem is a question about how
the standard deviation of some function of the measurements depends on the
standard deviations for the individual measurement: let X1, . . . , Xn be n mea-
surements with standard deviations (average measurement errors) σ1, . . . , σn.
As usual in this material, we assume that these measurement errors are inde-
pendent of each other. There are extensions of the formulas that can handle
dependencies, but we omit those here. We must then in a general formulation
be able to find

σ2
f (X1,...,Xn)

= V( f (X1, . . . , Xn)). (4-1)
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Remark 4.2

[For the thoughtful reader: Measurement errors, errors and variances] Al-
though we motivate this entire treatment by the measurement error termi-
nology, often used in chemistry and physics, actually everything is valid
for any kind of errors, be it “time-to-time” production errors, or “substance-
to-substance” or “tube-to-tube” errors. What the relevant kind of er-
rors/variabilities are depends on the situation and may very well be mixed
together in applications. But, the point is that as long as we have a relevant
error variance, we can work with the concepts and tools here. It does not
have to have a “pure measurement error” interpretation.

Actually, we have already in this course seen the linear error propagation rule,
in Theorem in 2.56, which then can be restated here as

If f (X1, . . . , Xn) =
n

∑
i=1

aiXi, then σ2
f (X1,...,Xn)

=
n

∑
i=1

a2
i σ2

i .

There is a more general non-linear extension of this, albeit theoretically only an
approximate result, which involves the partial derivative of the function f with
respect to the n variables:

Method 4.3 The non-linear approximative error propagation rule

If X1, . . . , Xn are independent random variables with variances σ2
1 , . . . , σ2

n
and f is a (potentially non-linear) function of n variables, then the variance
of the f -transformed variables can be approximated linearly by

σ2
f (X1,...,Xn)

=
n

∑
i=1

(
∂ f
∂xi

)2

σ2
i , (4-2)

where ∂ f
∂xi

is the partial derivative of f with respect to the i’th variable

In practice one would have to insert the actual measurement values x1, . . . , xn
of X1, . . . , Xn in the partial derivatives to apply the formula in practice, see the
example below. This is a pretty powerful tool for the general finding of (ap-
proximate) uncertainties for complicated functions of many measurements or
for that matter: complex combinations of various statistical quantities. When
the formula is used for the latter, it is also in some contexts called the ”delta
rule” (which is mathematically speaking a so-called first-order (linear) Taylor
approximations to the non-linear function f ). We bring it forward here, because
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as an alternative to this approximate formula one could use simulation in the
following way:

Method 4.4 Non-linear error propagation by simulation

Assume we have actual measurements x1, . . . , xn with known/assumed er-
ror variances σ2

1 , . . . , σ2
n:

1. Simulate k outcomes of all n measurements from assumed error distri-
butions, e.g. N(xi, σ2

i ): X(j)
i , j = 1 . . . , k.

2. Calculate the standard deviation directly as the observed standard de-
viation of the k simulated values of f :

ssim
f (X1,...,Xn)

=

√√√√ 1
k− 1

k

∑
j=1

( f j − f̄ )2, (4-3)

where

f j = f (X(j)
1 , . . . , X(j)

n ). (4-4)

Example 4.5

Let us continue the example with A = XY and X and Y defined as in the example
above. First of all note, that we already above used the simulation based error prop-
agation method, when we found the standard deviation to be 0.04957 based on the
simulation. To exemplify the approximate error propagation rule, we must find the
derivatives of the function f (x, y) = xy with respect to both x and y

∂ f
∂x

= y
∂ f
∂y

= x.

Assume, that we now have two specific measurements of X and Y, for example
x = 2.00 m and y = 3.00 m the error propagation law would provide the following
approximate calculation of the ”uncertainty error variance of the area result” 2.00 m ·
3.00 m = 6.00 m2, namely

σ2
A = y2 · 0.012 + x2 · 0.022 = 3.002 · 0.012 + 2.002 · 0.022 = 0.0025.

So, with the error propagation law we are managing a part of the challenge without
simulating. Actually, we are pretty close to be able to find the correct theortical
variance of A = XY using tools provided in this course. By the definition and the
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following fundamental relationship

V(X) = E(X− E(X))2 = E(X2)− E(X)2. (4-5)

So, one can actually deduce the variance of A theoretically, it is only necessary
to know in addition that for independent random variables: E(XY) = E(X)E(Y)
(which by the way then also tells us that E(A) = E(X)E(Y) = 6)

V(XY) = E
[
(XY)2]− E(XY)2

= E(X2)E(Y2)− E(X)2 E(Y)2

=
[
V(X) + E(X)2] [V(Y) + E(Y)2]− E(X)2 E(Y)2

= V(X)V(Y) + V(X)E(Y)2 + V(Y)E(X)2

= 0.012 · 0.022 + 0.012 · 32 + 0.022 · 22

= 0.00000004 + 0.0009 + 0.0016

= 0.00250004.

Note, how the approximate error propagation rule actually corresponds to the two
latter terms in the correct variance, while the first term – the product of the two
variances is ignored. Fortunately, this term is the smallest of the three in this case. It
does not always have to be like that. If you want to learn how to make a theoretical
derivation of the density function for A = XY then take a course in probability
calculation.

Note, how we in the example actually found the ”average error”, that is, the
error standard deviation by three different approaches:

1. The simulation based approach

2. The analytical, but approximate, error propagation method

3. A theoretical derivation

The simulation approach has a number of crucial advantages:

1. It offers a simple way to compute many other quantities than just the stan-
dard deviation (the theoretical derivations of such other quantities could
be much more complicated than what was shown for the variance here)

2. It offers a simple way to use any other distribution than the normal – if we
believe such better reflect reality

3. It does not rely on any linear approximations of the true non-linear rela-
tions
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4.2 The parametric bootstrap

4.2.1 Introduction

Generally, a confidence interval for an unknown parameter µ is a way to ex-
press uncertainty using the sampling distribution of µ̂ = x̄. Hence, we use a
distribution that expresses how our calculated value would vary from sample
to sample. And the sampling distribution is a theoretical consequence of the
original population distribution. As indicated, we have so far no method to do
this if we only have a small sample size (n < 30), and the data cannot be as-
sumed to follow a normal distribution. In principle there are two approaches
for solving this problem:

1. Find/identify/assume a different and more suitable distribution for the
population (”the system”)

2. Do not assume any distribution whatsoever

The simulation method called bootstrapping, which in practice is to simulate
many samples, exists in two versions that can handle either of these two chal-
lenges:

1. Parametric bootstrap: simulate multiple samples from the assumed distri-
bution.

2. Non-parametric bootstrap: simulate multiple samples directly from the
data.

Actually, the parametric bootstrap handles in addition the situation where data
could perhaps be normally distributed, but where the calculation of interest is
quite different than the average, for example, the coefficient of variation (stan-
dard deviation divided by average) or the median. This would be an example
of a non-linear function of data – thus not having a normal distribution nor a t-
distribution as a sampling distribution. So, the parametric bootstrap is basically
just an example of the use of simulation as a general calculation tool, as intro-
duced above. Both methods are hence very general and can be used in virtually
all contexts.

In this material we have met a few of such alternative continuous distributions,
e.g. the log-normal, uniform and exponential distributions. But if we think
about it, we have not (yet) been taught how to do any statistics (confidence
intervals and/or hypothesis testing) within an assumption of any of these. The
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parametric bootstrap is a way to do this without relying on theoretical deriva-
tions of everything. As for the theoretical variance deduction above, there are
indeed methods for doing such general theoretical derivations, which would
make us able to do statistics based on any kind of assumed distribution. The
most welknown, and in many ways also optimal, overall approach for this is
called maximum likelihood theory. The general theory and approach of maxi-
mum likelihood is not covered in this course, however it is good to know that,
in fact, all the methods we present are indeed also maximum likelihood meth-
ods assuming normal distributions for the population(s).

4.2.2 One-sample confidence interval for µ

Example 4.6 Confidence interval for the exponential rate or mean

Assume that we observed the following 10 call waiting times (in seconds) in a call
center

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0.

If we model the waiting times using the exponential distribution, we can estimate
the mean as

µ̂ = x̄ = 26.08,

and hence the rate parameter λ = 1/β in the exponential distribution as (cf. 2.48)

λ̂ = 1/26.08 = 0.03834356.

However, what if we want a 95% confidence interval for either µ = β or λ? We
have not been tought the methods, that is, given any formulas for finding this. The
following few lines of Python-code, a version of the simulation based error propa-
gation approach from above, will do the job for us:
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# Read the data
x = np.array([32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0])
n = len(x)
rate = 1/x.mean()

# Set the number of simulations
k = 100000

# 1. Simulate k samples each with n=10 observations from an
# exponential distribution with the estimated rate
simsamples = stats.expon.rvs(scale=1/rate, size=(k,n))

# 2. Compute the mean in each of the k samples
simsamples = pd.DataFrame(simsamples)
simmeans = simsamples.mean(axis=1)

# 3. Find the two relevant quantiles of the k generated means
print(np.quantile(simmeans,[0.025,0.975],
method='averaged_inverted_cdf'))

[12.575 44.563]

Explanation: we use stats.expon.rvs to generate 100.000 bootstrap samples each
with 10 observations from an exponential distribution with the estimated mean
value, and the results are collected in a 10× 100.000 matrix. Then in a single call
the 100.000 averages are calculated and subsequently the relevant quantiles found.

So the 95%-confidence interval for the mean µ is (in seconds)

[12.6, 44.6].

And for the rate λ = 1/µ it can be found by a direct transformation (remember that
the quantiles are ’invariant’ to monotonic transformations, c.f. Chapter 3)

[1/44.6, 1/12.6]⇔ [0.022, 0.0794].

The simulated sampling distribution of means that we use for our statistical analysis
can be seen with the histogram:
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# Histogram of the simulated means
plt.hist(simmeans, bins=30, edgecolor='black', color='blue', alpha=0.7)
plt.xlabel('Means')
plt.ylabel('Frequency')
plt.title('Histogram of simulated means')
plt.tight_layout()
plt.show()
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Histogram of simulated means

We see clearly that the sampling distribution in this case is not a normal nor a t-
distribution: it has a clear right skewed shape. So n = 10 is not quite large enough
for this exponential distribution to make the Central Limit Theorem take over.

The general method which we have used in the example above is given below
as Method 4.7.

4.2.3 One-sample confidence interval for any feature assuming
any distribution

We saw in the example above that we could easily find a confidence interval for
the rate λ = 1/µ assuming an exponential distribution. This was so, since the
rate was a simple (monotonic) transformation of the mean, and the quantiles
of simulated rates would then be the same simple transformation of the quan-
tiles of the simulated means. However, what if we are interested in something
not expressed as a simple function of the mean, for instance the median, the
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coefficient of variation, the quartiles, Q1 or Q3, the IQR=Q3 − Q1 or any other
quantile? Well, a very small adaptation of the method above would make that
possible for us. To express that we now cover any kind of statistic one could
think of, we use the general notation, the Greek letter θ, for a general feature
of the distribution. For instance, θ could be the true median of the population
distribution, and then θ̂ is the sample median computed from the sample taken.

Method 4.7 Confidence interval for any feature θ by parametric
bootstrap

Assume we have actual observations x1, . . . , xn and assume that they stem
from some probability distribution with density (pdf) f :

1. Simulate k samples of n observations from the assumed distribution f
where the mean is set to x̄ a

2. Calculate the statistic θ̂ in each of the k samples θ̂∗1 , . . . , θ̂∗k

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

a(Footnote: And otherwise chosen to match the data as good as possible: some distributions
have more than just a single mean related parameter, e.g. the normal or the log-normal. For these
one should use a distribution with a variance that matches the sample variance of the data. Even
more generally the approach would be to match the chosen distribution to the data by the so-called
maximum likelihood approach)

Please note again, that you can simply substitute the θ with whatever statistics
that you are working with. This then also shows that the method box includes
the often occurring situation, where a confidence interval for the mean µ is the
aim.
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Example 4.8 Confidence interval for the median assuming an ex-
ponential distribution

Let us look at the exponential data from the previous section and find the confidence
interval for the median:

# Read the data
x = np.array([32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0])
n = len(x)
rate = 1/x.mean()

# Set the number of simulations
k = 100000

# 1. Simulate k samples each with n=10 observations from an
# exponential distribution with the estimated rate
simsamples = stats.expon.rvs(scale=1/rate, size=(k,n))

# 2. Compute the median in each of the k samples
simsamples = pd.DataFrame(simsamples)
simmedians = simsamples.median(axis=1)

# 3. Find the two relevant quantiles of the k generated medians
print(np.quantile(simmedians,[0.025,0.975],
method='averaged_inverted_cdf'))

[ 7.093 38.333]

The simulated sampling distribution of medians that we use for our statistical anal-
ysis can be studied by the histogram:
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# Histogram of the simulated medians
plt.hist(simmedians, bins=30, edgecolor='black', color='blue', alpha=0.7)
plt.xlabel('Medians')
plt.ylabel('Frequency')
plt.title('Histogram of simulated medians')
plt.tight_layout()
plt.show()
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Histogram of simulated medians

We see again clearly that the sampling distribution in this case is not a normal nor a
t-distribution: it has a clear right skewed shape.

Example 4.9 Confidence interval for Q3 assuming a normal distri-
bution

Let us look at the heights data from the previous chapters and find the 99% con-
fidence interval for the upper quartile: (Please note that you will find NO theory
nor analytically expressed method boxes in the material to solve this challenge). We
proceed like in the previous example:
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# Read the data
x = np.array([168, 161, 167, 179, 184, 166, 198, 187, 191, 179])
n = len(x)
mu = x.mean()
sd = x.std(ddof=1)

# Set the number of simulations
k = 100000

# 1. Simulate k samples each with n=10 observations from a
# normal distribution with the estimated parameters
simsamples = stats.norm.rvs(loc=mu, scale=sd, size=(k,n))

# 2. Compute the upper quartile in each of the k samples
simsamples = pd.DataFrame(simsamples)

# A version using the quantile-function from Pandas.
# Note: Pandas does not use our method of calculating quantiles.
simUQs = simsamples.quantile(0.75, axis=1)

# A version using the quantile-function from NumPy.
simUQs = np.quantile(simsamples, 0.75, axis=1, method="averaged_inverted_cdf")

# 3. Find the two relevant quantiles of the k generated medians
print(np.quantile(simUQs,[0.005,0.995],method='averaged_inverted_cdf'))

[173.481 199.813]

The simulated sampling distribution of upper quartiles that we use for our statistical
analysis can be studied by the histogram:
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# Histogram of the simulated upper quartiles
plt.hist(simUQs, bins=30, edgecolor='black', color='blue', alpha=0.7)
plt.xlabel('Upper quartiles')
plt.ylabel('Frequency')
plt.title('Histogram of simulated upper quartiles')
plt.tight_layout()
plt.show()
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In this case the Q3 of n = 10 samples of a normal distribution appear to be rather
symmetric and nicely distributed, so maybe one could in fact use the normal distri-
bution, also as an approximate sampling distribution in this case.

4.2.4 Two-sample confidence intervals assuming any distributions

In this section we extend what we learned in the two previous sections to the
case where the focus is a comparison between two (independent) samples. We
present a method box which is the natural extensions of the method box from
above, comparing any kind of feature (hence including the mean comparison):
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Method 4.10 Two-sample confidence interval for any feature com-
parison θ1 − θ2 by parametric bootstrap

Assume we have actual observations x1, . . . , xn1 and y1, . . . , yn2 and assume
that they stem from some probability distributions with density f1 and f2:

1. Simulate k sets of 2 samples of n1 and n2 observations from the as-
sumed distributions setting the means to µ̂1 = x̄ and µ̂2 = ȳ, respec-
tively a

2. Calculate the difference between the features in each of the k samples
θ̂∗x1 − θ̂∗y1, . . . , θ̂∗xk − θ̂∗yk

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval[
q∗100(α/2)%, q∗100(1−α/2)%

]

a(Footnote: And otherwise chosen to match the data as good as possible: some distributions
have more than just a single mean related parameter, e.g. the normal or the log-normal. For these
one should use a distribution with a variance that matches the sample variance of the data. Even
more generally the approach would be to match the chosen distribution to the data by the so-called
maximum likelihood approach)

Example 4.11 CI for the difference of two means from exponential
distributed data

Let us look at the exponential data from the previous section and compare that with
a second sample of n = 12 observations from another day at the call center

9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2, 18.0, 62.4, 10.3.

Let us quantify the difference between the two days and conclude whether the call
rates and/or means are any different on the two days:
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# Read the data
x = np.array([32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0])
y = np.array([9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2, 18.0, 62.4, 10.3])
n1 = len(x)
n2 = len(y)
rate1 = 1/x.mean()
rate2 = 1/y.mean()

# Set the number of simulations
k = 100000

# 1. Simulate k samples each with n1=10 observations from an
# exponential distribution with the estimate rate of X
simXsamples = stats.expon.rvs(scale=1/rate1, size=(k,n1))
simXsamples = pd.DataFrame(simXsamples)

# 2. Simulate k samples each with n2=12 observations from an
# exponential distribution with the estimated rate of Y
simYsamples = stats.expon.rvs(scale=1/rate2, size=(k,n2))
simYsamples = pd.DataFrame(simYsamples)

# 3. Compute the difference between the two simulated means - k times
simDifmeans = simXsamples.mean(axis=1) - simYsamples.mean(axis=1)

# 4. Find the two relevant quantiles of the k generated differences in mean
print(np.quantile(simDifmeans,[0.025,0.975],
method='averaged_inverted_cdf'))

[-40.521 14.028]

Thus, although the mean waiting time was higher on the second day (ȳ = 38.24 s),
the range of acceptable values (the confidence interval) for the difference in means
is [−40.5, 14.0] – a pretty large range and including 0, so we have no evidence of the
claim that the two days had different mean waiting times (nor call rates then) based
on the current data.

Let us, as in previous examples take a look at the distribution of the simulated sam-
ples. In a way, we do not really need this for doing the analysis, but just out of
curiosity, and for the future it may give a idea of how far from normality the rele-
vant sampling distribution really is:
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# Histogram of the simulated differences
plt.hist(simDifmeans, bins=30, edgecolor='black', color='blue', alpha=0.7)
plt.xlabel('Differences in mean')
plt.ylabel('Frequency')
plt.title('Histogram of differences in mean')
plt.tight_layout()
plt.show()
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In this case the differences of means of exponential distributions appears to be rather
symmetric and nicely distributed, so maybe one could in fact use the normal distri-
bution, also as an approximate sampling distribution in this case.

Example 4.12 Nutrition study: comparing medians assuming nor-
mal distributions

Let us compare the median energy levels from the two-sample nutrition data from
Example 3.46. And let us do this still assuming the normal distribution as we also
assumed in the previous example. First we read in the data:

# Read the data
xA = np.array([7.53, 7.48, 8.08, 8.09, 10.15, 8.4, 10.88, 6.13, 7.9])
xB = np.array([9.21, 11.51, 12.79, 11.85, 9.97, 8.79, 9.69, 9.68, 9.19])
nA = len(xA)
nB = len(xB)

Then we do the two-sample median comparison by the parametric, normal based,
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bootstrap:

# Set the number of simulations
k = 100000

# 1. Simulate k samples each with nA=9 observations from a
# normal distribution with the estimate parameters for group A
simAsamples = stats.norm.rvs(loc=xA.mean(), scale=xA.std(ddof=1) , size=(k,nA))
simAsamples = pd.DataFrame(simAsamples)

# 2. Simulate k samples each with nB=9 observations from a
# normal distribution with the estimate parameters for group B
simBsamples = stats.norm.rvs(loc=xB.mean(), scale=xB.std(ddof=1) , size=(k,nB))
simBsamples = pd.DataFrame(simBsamples)

# 3. Compute the difference between the two simulated medians - k times
simDifmedians = simAsamples.median(axis=1) - simBsamples.median(axis=1)

# 4. Find the two relevant quantiles of the k generated differences in medians
print(np.quantile(simDifmedians,[0.025,0.975],
method='averaged_inverted_cdf'))

[-3.617 -0.401]

Thus, we accept that the difference between the two medians is somewhere between
0.4 and 3.6, and confirming the group difference that we also found in the means, as
the 0 is not included in the interval.

Note the differences in the Python code compared to the previous bootstrapping
example: we use the stats.expon.rvs-function instead of the stats.norm.rvs-
function and change the method from .mean to .median.

Remark 4.13 Hypothesis testing by simulation based confidence
intervals

We have also seen that even though the simulation method boxes given are
providing confidence intervals: we can also use this for hypothesis testing,
by using the basic relation between hypothesis testing and confidence in-
tervals. A confidence interval includes the ’acceptable’ values, and values
outside the confidence interval are the ’rejectable’ values.
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4.3 The non-parametric bootstrap

4.3.1 Introduction

In the introduction to the parametric bootstrap section above it was discussed
that another approach instead of finding the ’right’ distribution to use is to not
assume any distribution at all. This can be done, and a way to do this simula-
tion based is called the non-parametric bootstrap and is presented in this section.
The section is structured as the parametric bootstrap section above – includ-
ing the similar subsections and similar method boxes. So there will be two
method boxes in this section: one for the one-sample analysis and one for the
two-sample analysis.

In fact, the non-parametric approach could be seen as the parametric approach
but substituting the density/distribution used for the simulation by the ob-
served distribution of the data, that is, the empirical cumulative distribution
function (ecdf), cf. Chapter 1. In practice this is carried out by (re)-sampling the
data we have again and again: To get the sampling distribution of the mean (or
any other feature) based on the n observations that we have in our given sam-
ple, we simply again and again take new samples with n observations from the
one we have. This is done ”with replacement” such that the ”new” samples,
from now on called the bootstrap samples would contain some of the original
observations in duplicates (or more) and others will not be there.

4.3.2 One-sample confidence interval for µ

We have the sample: x1, . . . , xn.

The 100(1− α)% confidence interval for µ determined by the non-parametric
bootstrap is first exemplified:



Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 206

Example 4.14 Women’s cigarette consumption

In a study women’s cigarette consumption before and after giving birth is explored.
The following observations of the number of smoked cigarettes per day were ob-
served:

before after before after
8 5 13 15

24 11 15 19
7 0 11 12

20 15 22 0
6 0 15 6

20 20

This is a typical paired t-test setup, as discussed in Section 3.2.3, which then was
handled by finding the 11 differences and thus transforming it into a one-sample
setup. First we read the observations into Python and calculate the differences by:

# # Read the data and calculate the difference for each woman before and after
x1 = np.array([8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15])
x2 = np.array([5, 11, 0, 15, 0, 20, 15, 19, 12, 0, 6])
dif = x1-x2
print(dif)

[ 3 13 7 5 6 0 -2 -4 -1 22 9]

There is a random-sampling function in the NumPy package (which again is based
on a uniform random number generator): np.random.choice. Eg. you can get
5 repeated samples with replacement by: (Note that the argument replace is
true by default. Sampling without replacement can thus be done by specifying
replace=false.)

np.random.choice(dif,size=(5,len(dif)))

array([[-4, 5, 0, -1, 7, -2, -2, 5, 0, -2, 3],
[ 3, -1, 5, -2, 9, 13, -2, -1, 0, 13, 9],
[ 6, -2, 22, 7, -4, 7, 7, 5, 9, 5, 22],
[-1, 5, 6, -1, 5, -1, 7, 3, 3, 6, 6],
[-4, 7, -2, -2, 3, 7, -2, -2, 9, 13, 22]])
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Explanation: the first argument, dif, defines the sampling space, and the second ar-
gument, size=(5,len(dif)), defines the number of bootstrap samples, 5, and their
respective sizes, len(dif).

One can then run the following to get a 95% confidence interval for µ based on
k = 100000:

# Set the number of simulations
k = 100000

# Simulate k samples each with 11 observations by
# sampling with replacement from the data
simsamples = np.random.choice(dif,size=(k,len(dif)))

# Compute the mean in each of the k samples
simmeans = simsamples.mean(axis=1)

# Find the two relevant quantiles of the k generated meeans
print(np.quantile(simmeans,[0.025,0.975],
method='averaged_inverted_cdf'))

[1.364 9.818]

Explanation: The np.random.choice-function is called 100.000 times and the results
collected in an 11× 100.000 matrix. Then in a single call the 100.000 averages are
calculated and subsequently the relevant quantiles found.

Note, that we use the similar three steps as above for the parametric bootstrap, with
the only difference that the simulations are carried out by the re-sampling the given
data rather than from some probability distribution.

4.3.3 One-sample confidence interval for any feature

What we have just done can be more generally expressed as follows:



Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 208

Method 4.15 Confidence interval for any feature θ by non-
parametric bootstrap

Assume we have actual observations x1, . . . , xn:

1. Simulate k samples of size n by randomly sampling among the avail-
able data (with replacement)

2. Calculate the statistic θ̂ in each of the k samples θ̂∗1 , . . . , θ̂∗k

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

Example 4.16

Let us find the 95% confidence interval for the median cigarette consumption change
in the example from above:

# The 95% CI for the median change
k = 100000
simsamples = pd.DataFrame(np.random.choice(dif,size=(k,len(dif))))
simmedians = simsamples.median(axis=1)
print(np.quantile(simmedians,[0.025,0.975],
method='averaged_inverted_cdf'))

[-1.000 9.000]

4.3.4 Two-sample confidence intervals

We now have two random samples: x1, . . . , xn1 and y1, . . . , yn2 . The 100(1− α)%
confidence interval for θ1 − θ2 determined by the non-parametric bootstrap is
defined as:
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Method 4.17 Two-sample confidence interval for θ1 − θ2 by non-
parametric bootstrap

Assume we have actual observations x1, . . . , xn1 and y1, . . . , yn2 :

1. Simulate k sets of 2 samples of n1 and n2 observations from the respec-
tive groups (with replacement)

2. Calculate the difference between the features in each of the k samples
θ̂∗x1 − θ̂∗y1, . . . , θ̂∗xk − θ̂∗yk

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

Example 4.18 Teeth and bottle

In a study it was explored whether children who received milk from bottle as a child
had worse or better teeth health conditions than those who had not received milk
from the bottle. For 19 randomly selected children it was recorded when they had
their first incident of caries:

bottle age bottle age bottle Age
no 9 no 10 yes 16
yes 14 no 8 yes 14
yes 15 no 6 yes 9
no 10 yes 12 no 12
no 12 yes 13 yes 12
no 6 no 20
yes 19 yes 13

One can then run the following to obtain a 95 % confidence interval for µ1−µ2 based
on k = 100000:
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# Reading in "no bottle" group
x = np.array([9, 10, 12, 6, 10, 8, 6, 20, 12])
# Reading in "yes bottle" group
y = np.array([14,15,19,12,13,13,16,14,9,12])
# Number of simulations
k = 100000
# Simulate each sample k times
simxsamples = pd.DataFrame(np.random.choice(x,size=(k,len(x))))
simysamples = pd.DataFrame(np.random.choice(y,size=(k,len(y))))
# Calculate the sample mean differences
simmeandifs = simxsamples.mean(axis=1) - simysamples.mean(axis=1)
# Quantiles of the differences gives the CI
print(np.quantile(simmeandifs,[0.025,0.975],
method='averaged_inverted_cdf'))

[-6.211 -0.122]

Example 4.19

Let us make a 99% confidence interval for the difference of medians between the
two groups in the tooth health example:

# CI for the median differences
simmediandifs = simxsamples.median(axis=1) - simysamples.median(axis=1)
print(np.quantile(simmediandifs,[0.005,0.995],
method='averaged_inverted_cdf'))

[-8.000 0.000]
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Remark 4.20 Warning: Bootstrapping may not always work well
for small sample sizes!

The bootstrapping idea was presented here rather enthusiastically as an al-
most magic method that can do everything for us in all cases. This is not
the case. Some statistics are more easily bootstrapped than others and gen-
erally non-parametric bootstrap will not work well for small samples. The
inherent lack of information with small samples cannot be removed by any
magic trick. Also, there are more conceptually difficult aspects of bootstrap-
ping for various purposes to improve on some of these limitations, see the
next section. Some of the "naive bootstrap" CI interval examples introduced
in this chapter is likely to not have extremely good properties – the coverage
percentages might not in all cases be exactly at the aimed nominal levels.
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Chapter 5

Simple Linear regression

5.1 Linear regression and least squares

In engineering applications we are often faced with the problem of determining
the best model of some outcome given a known input

y = f (x), (5-1)

hence x is the input and the function f is the model. The task is now to find
the best model given the input variables (x) and the outcome (y). The simplest
model, besides just a mean value (covered in Chapters 3 and 4), would be a
model where f is a linear function of x

y = β0 + β1x. (5-2)

When the outcome y is the result of some experiment, the model will not be
perfect, and we need to add an error term

Yi = β0 + β1xi + εi, i = {1, . . . , n}, (5-3)

where εi is called the error and is a sequenece of independent random vari-
ables with expectation equal zero (i.e. the mean E(εi) = 0 and some variance
(V(εi) = σ2). The statistical interpretation of (5-2) is therefore that it expresses
the expected value of the outcome

E(Yi) = β0 + β1xi, (5-4)

also called the model prediction.
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It is of course a very unusual situation that we actually know the values of
β0 and β1 and we will have to rely on estimates based on some observations
(y1, . . . , yn). As usual we express this by putting a “hat” on the parameters

ŷi = β̂0 + β̂1xi, (5-5)

meaning that we expect or predict ŷi (in mean or average) under the conditions
given by xi.

Example 5.1

A car manufacturer wants to find the relation between speed and fuel consumption,
to do so she sets up the following model

Yi = β0 + β1xi + ε i, (5-6)

here E(Yi) is the expected fuel consumption at the speed xi. Further, there will be
uncontrollable variations, e.g. due to differences in weather condition, but also non-
linear effects not included in the model might be present. These variations are cap-
tured by the ε i’s. We see that speed is something we control here, and we then
observe the outcome (here fuel consumption), at different experimental conditions
(speeds).

In this chapter we will deal with estimation and inference of β0, β1, and predic-
tion of Yi given xi. At some point we will have realizations (or observations) of
the outcome, in this case we write

yi = β0 + β1xi + ei, i = {1, . . . , n}. (5-7)

Now yi is a realization and ei is the deviation between the model prediction and
the actual observation: a realization of the error εi, it is called a residual. Clearly,
we want the residuals to be small in some sense, the usual choice (and the one
treated in this chapter) is in the Residual Sum of Squares (RSS) sense, i.e. we
want to minimize the residual sum of squares

RSS(β0, β1) =
n

∑
i=1

ε2
i =

n

∑
i=1

(Yi − (β0 + β1xi))
2, (5-8)

where we have emphasized that the residual sum of squares is a function of the
parameters (β0, β1). The parameter estimates (β̂0, β̂1) are the values of β0 and
β1 which minimize RSS. Note, that we use Yi and εi rather than the observed
values (yi and ei), this is to emphasize that the estimators are random variables,
in actual calculations after the experiments are carried out we will just replace
Yi with yi and εi with ei. Figure 5.1 sketches the linear regression problem.
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Figure 5.1: Conceptual diagram for the simple linear regression problem.

Remark 5.2 Estimates and estimators

In (5-8) the RSS is a function of the random variables (Yi), thus making RSS
a random variable. If we replace Yi with the realizations yi then RSS is also
a realization.
In this chapter the result of optimizing RSS with respect to β0 and β1 will
be denoted β̂0 and β̂1. Sometimes β̂0 and β̂1 will be functions of Yi and
sometimes they will be functions of the realizations yi, they are referred to
as:

1. Estimators: before the experiment has been carried out, then β̂0 and
β̂1 are functions of Yi and they are also random variables, and we call
them estimators.

2. Estimates: after the experiment had been carried out, then β̂0 and β̂1
are functions of yi and they are also realizations of random variables,
and we call them estimates.
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Remark 5.3 Two types of examples

In this chapter we will use two types of examples, one is labelled “Simula-
tion”, which are simulation studies intended to illustrate the consequences
of theorems and general results. While the other type of examples (not la-
belled “Simulation”), are intended to illustrate the use of the theorems on
pratical examples.

5.2 Parameter estimates and estimators

When β̂0 and β̂1 is a result of minimizing the function in Equation (5-8), we
refer to the estimators as least squares estimators. The least squares estimators are
given in the following theorem:

Theorem 5.4 Least squares estimators

The least squares estimators of β0 and β1 are given by

β̂1 =
∑n

i=1(Yi − Ȳ)(xi − x̄)
Sxx

, (5-9)

β̂0 = Ȳ− β̂1x̄, (5-10)

where Sxx = ∑n
i=1(xi − x̄)2.

As we can see above the estimators (β̂1 and β̂2) are functions of random vari-
ables (Yi and Ȳ), and thus the estimators are themselves random variables. We
can therefore talk about the expectation, variance and distribution of the esti-
mators. In analyses with data we will of course only see realizations of Yi and
we just replace Yi and Ȳ with their realizations yi and ȳ. In this case we speak
about estimates of β0 and β1.

Before we go on with the proof of Theorem 5.4, the application of the theorem
is illustrated in the following example:
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Example 5.5 Student height and weight

Consider the student height and weight data presented in Chapter 1,

Heights (xi) 168 161 167 179 184 166 198 187 191 179
Weights (yi) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9

We want to find the best least squares regression line for these points, this is equiv-
alent to calculating the least squares estimates of β̂0 and β̂1.

We start by finding the two sample means

x̄ =
1
10

(168 + 161 + . . . + 179) = 178,

ȳ =
1
10

(65.5 + 58.3 + . . . + 78.9) = 78.11.

The value of Sxx is calculated by

Sxx = (168− 178)2 + . . . + (179− 178)2 = 1342.

We can now calculate β̂1 as

β̂1 =
1

1342
(
(65.5− 78.11)(168− 179) + . . . + (79.9− 78.11)(179− 178)

)
= 1.11,

and finally, we can calculate β̂0 as

β̂0 = 78.11− 1.11 · 178 = −120.

The calculations can be implemented by

# Read data
x = np.array([168, 161, 167, 179, 184, 166, 198, 187, 191, 179])
y = np.array([65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9])

# Calculate averages
xbar = x.mean()
ybar = y.mean()

# Parameters estimates
Sxx = sum((x - xbar)**2)
beta1hat = sum((x - xbar)*(y - ybar)) / Sxx
beta0hat = ybar - beta1hat * xbar
print(round(beta0hat.mean(),2), round(beta1hat.mean(),2))

-119.96 1.11
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Rather than using “manual” calculations, we can use the buildin functions

student = pd.DataFrame({'x': x, 'y': y})
fitStudents = smf.ols(formula = 'y ~ x', data=student).fit()
print(fitStudents.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.932
Model: OLS Adj. R-squared: 0.924
No. Observations: 10 F-statistic: 110.3
Covariance Type: nonrobust Prob (F-statistic): 5.87e-06
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -119.9581 18.897 -6.348 0.000 -163.535 -76.381
x 1.1127 0.106 10.504 0.000 0.868 1.357
==============================================================================

As we can see the two calculations give the same results regarding the parameter
estimates. We can also see that the high level calculation gives some more informa-
tion. How to interpret and calculate these numbers will be treated in the following
pages.

Before we go on with the analysis of the results, the proof of Theorem 5.4 is
presented:

Proof

Of Theorem 5.4: In order to find the minimum of the function RSS we differentiate
the residual sum of squares with respect to the parameters

∂RSS
∂β̂0

= −2
n

∑
i=1

(yi − (β̂0 + β̂1xi)), (5-11)

now equating with zero we get

0 = −2
n

∑
i=1

(yi − (β̂0 + β̂1xi))

= −2nȳ + 2nβ̂0 + 2nβ̂1 x̄,

(5-12)

solving for β̂0 gives

β̂0 = ȳ− β̂1 x̄, (5-13)
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and by similar calculations we get

∂RSS
∂β̂1

=
∂

∂β̂1

(
n

∑
i=1

(yi − (ȳ− β̂1 x̄ + β̂1xi))
2

)

=
∂

∂β̂1

(
n

∑
i=1

((yi − ȳ)− β̂1(xi − x̄))2

)

= −2
n

∑
i=1

((yi − ȳ)− β̂1(xi − x̄))(xi − x̄)

= −2

[
x

∑
i=1

(yi − ȳ)(xi − x̄)− β̂1

x

∑
i=1

(xi − x̄)2

]
,

(5-14)

equating with zero and solving for β̂1 gives

β̂1 =
∑n

i=1(yi − ȳ)(xi − x̄)
∑n

i=1(xi − x̄)2

=
∑n

i=1(yi − ȳ)(xi − x̄)
Sxx

.
(5-15)

The estimates β̂0 and β̂1 are called least squares estimates, because they minimize
the sum of squared residuals (i.e. RSS). Replacing yi with Yi give the estimators in
the theorem.

�

When we have obtained parameter estimates in the linear regression model
above, we would like to make quantitative statements about the uncertainty
of the parameters, and in order to design tests we will also need the probabil-
ity distribution of the parameter estimators. The usual assumption is that the
errors are normal random variables

Yi = β0 + β1xi + εi, where εi ∼ N(0, σ2), (5-16)

or in other words the errors are independent identically distributed (i.i.d.) nor-
mal random variables with zero mean and variance σ2. When random variables
are involved we know that repeating the experiment will result in different val-
ues of the response (Yi), and therefore in different values of the parameter es-
timates. To illustrate this we can make simulation experiments to analyse the
behaviour of the parameter estimates. Recall that the role of simulation exam-
ples are to illustrate probabilistic behaviour of e.g. estimators, not how actual
data is analysed.
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Remark 5.6 How to write a statistical model

In Remark 3.2 it was explained how to write the model behind the t-tests,
i.e.

Xi ∼ N(µ, σ2) and i.i.d. (5-17)

Remember, that i.i.d. is short for independently and identically distributed,
which essentially means that the observations are selected randomly from
population, see the text after Example 1.2.

Using this notation the linear regression model could be written

Yi ∼ N(β0 + β1xi, σ2) and independent, (5-18)

however we will write models as above in Equation (5-16).
Note, if β1 = 0 the model is

Yi = β0 + εi, where εi ∼ N(0, σ2) and i.i.d., (5-19)

which is exactly the model above in Equation (5-17), and the estimate of the
mean of the population, from which the sample (i.e. (y1, . . . , yn)) was taken,
is then

µ̂ = β̂0. (5-20)

Example 5.7 Simulation of parameter estimation

Consider the linear model

Yi = 10 + 3xi + ε i, ε i ∼ N(0, 52). (5-21)

We can make repetitions of this experiment by

np.random.seed(124)
n = 10
k = 500
beta0 = 10
beta1 = 3
sigma = 5
x = np.linspace(-2, 5, num=n)
y0 = np.zeros((k,n))
y = y0 + beta0 + beta1*x + np.random.normal(0, sigma, size=(k,n))
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The variable y now contains n rows and k columns, representing k experiments, for
each of the experiment we can calculate the parameter estimates:

b0 = np.zeros(k)
b1 = np.zeros(k)
for i in range(k):

D = pd.DataFrame({'x': x, 'y': y[i,:]})
result = smf.ols(formula = 'y ~ x', data=D).fit()
b0[i] = result.params["Intercept"]
b1[i] = result.params["x"]

print(round(b0.mean(),2), round(b1.mean(),2))

10.09 2.97

As we can see the average of the parameter estimates (b0.mean and b1.mean) are
very close to the true parameter values (β0 = 10 and β1 = 3). We can of course
also look at the empirical density (the normalized histogram, see Section 1.6.1) of
the parameter estimates:
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The estimates seem to be rather symmetrically distributed around the true parame-
ter values. It is also clear that there is some variation in the estimates: the estimates
of β0 range from about 4 to about 16 and the estimates of β1 range from about 1 to 5.

Try changing the code (see the accompanying chapter script):

What happens to the mean value of the estimates if you change the number
of data points (n)?
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What happens to the empirical density and the scatter plot of the parameter
estimates if you change:

• The number of data points (n)?

• The range of x-values?

• The residual variance (σ2)?

• The values of β0 and β1?

In the example above we saw that the average of the parameter estimates were
very close to the true values, this is of course a nice property of an estimator.
When this is the case in general, i.e. when E[β̂i] = βi we say that the estimator
is central or unbiased. The estimators β̂0 and β̂1 are in fact central, and we show
this in Section 5.2.1 below.

In order to test hypothesis about β0 and β1 we will also need to give exact state-
ments about the distribution of the parameters. We saw in Example 5.7 above
that the distributions seem to be symmetric around the true values, but we will
need more precise statements about the distributions and their variances. This
important part will be dealt with in the Sections 5.3 and 5.4.

5.2.1 Estimators are central

In the linear regression model we assume that the observed values of Yi can be
split into two parts: the prediction (the part explained by the regression line
(β0 + β1xi)) and the error (a random part (εi)). As usual we view our estima-
tors as functions of random variables (the εi’s), so it makes sense to calculate
the expectation of the estimators. The assumption E(εi) = 0 is central for the
presented arguments, and will be used repeatedly.

In order to find the expectation of the parameter estimators we rewrite our esti-
mators as functions of the true parameters (β0 and β1)

β̂1 =
∑n

i=1(Yi − Ȳ)(xi − x̄)
Sxx

, (5-22)

inserting Yi = β0 + β1xi + εi and Ȳ = 1
n ∑n

i=1(β0 + β1xi + εi) = β0 + β1x̄ + ε̄

gives

β̂1 =
∑n

i=1 [(β0 + β1xi + εi − (β0 + β1x̄ + ε̄)] (xi − x̄)
Sxx

, (5-23)
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now the sum is divided into a part which depends on εi (the random part) and
a part which is independent of εi

β̂1 =
∑n

i=1 β1(xi − x̄)2

Sxx
+

∑n
i=1(εi − ε̄)(xi − x̄)

Sxx

= β1 +
∑n

i=1 εi(xi − x̄)
Sxx

− ε̄ ∑n
i=1(xi − x̄)

Sxx
,

(5-24)

now observe that ∑n
i=1(xi − x̄) = 0 to get

β̂1 = β1 +
∑n

i=1 εi(xi − x̄)
Sxx

, (5-25)

for β̂0 we get

β̂0 = ȳ− β̂1x̄

=
1
n

n

∑
i=1

(β0 + β1xi + εi)−
(

β1 +
∑n

i=1 εi(xi − x̄)
Sxx

)
x̄

= β0 + β1x̄i +
1
n

n

∑
i=1

εi −
(

β1 +
∑n

i=1 εi(xi − x̄)
Sxx

)
x̄

= β0 +
1
n

n

∑
i=1

εi −
(

∑n
i=1 εi(xi − x̄)

Sxx

)
x̄.

(5-26)

Since expectation is a linear operation (see Chapter 2) and the expectation of εi
is zero we find that E[β̂0] = β0 and E[β̂1] = β1, and we say that β̂0, β̂1 are central
estimators.

5.3 Variance of estimators

In order for us to be able to construct confidence intervals for parameter esti-
mates, talk about uncertainty of predictions and test hypothesis, we will need
the variance of the parameter estimates as well as an estimator of the error vari-
ance (σ2).

Parameter variance and covariance of estimators are given in the following the-
orem:
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Theorem 5.8 Variance of estimators

The variance and covariance of the estimators in Theorem 5.4 are given by

V[β̂0] =
σ2

n
+

x̄2σ2

Sxx
, (5-27)

V[β̂1] =
σ2

Sxx
, (5-28)

Cov[β̂0, β̂1] = −
x̄σ2

Sxx
, (5-29)

where σ2 is usually replaced by its estimate (σ̂2). The central estimator for
σ2 is

σ̂2 =
RSS(β̂0, β̂1)

n− 2
. (5-30)

When the estimate of σ2 is used the variances also become estimates and
we’ll refer to them as σ̂2

β0
and σ̂2

β1
.

The variance of β̂1 is a function of the true error variance (σ2) and Sxx. For most
(all reasonable) choices of the regressors (x), Sxx will be an increasing function
of n, and the variance of β̂1 will therefore decrease as n increases. This expresses
that we will be more certain about the estimates as we increase the number of
points in our sample. The same is true for the variance of β̂0, and the covari-
ance between β̂1 and β̂0. The error variance estimate (σ̂2) is the residual sum of
squares divided by n− 2, the intuitive explanation for the n− 2 (rather than n
or n − 1) is that if we only have two (n = 2) pairs (xi, yi), it will not be possi-
ble to say anything about the variation (the residuals will be zero). Or another
phrasing is that; we have used 2 degrees of freedom to estimate β̂0 and β̂1.

Before we turn to the proof of Theorem 5.8, we will take a look at a couple of
examples.

Example 5.9 (Example 5.5 cont.)

In Example 5.5 we found the parameter estimates

β̂0 = −120, β̂1 = 1.11,

we can now find predicted values of the dependent variable by

ŷi = −120 + 1.11 · xi,
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and the values of the residuals

ei = yi − ŷi,

and finally the error variance estimate is

σ̂2 =
1

10− 2

10

∑
i=1

e2
i .

We can implement the results by:

beta0 = fitStudents.params["Intercept"]
beta1 = fitStudents.params["x"]
e = student["y"] - (beta0 + beta1 * student["x"])
n = len(e)
sigma = math.sqrt(np.sum(e**2) / (n - 2))
sigma_beta0 = math.sqrt(sigma**2 * (1 / n + xbar**2 / Sxx))
sigma_beta1 = math.sqrt(sigma**2 / Sxx)
print(round(sigma,2), round(sigma_beta0,2), round(sigma_beta1,2))

3.88 18.9 0.11

As usual we use standard deviations rather than variances, this also means that we
can compare with the results from smf.ols (see Example 5.5). Again we can find
our estimates in the Python-output, the parameter standard deviations are given in
the second column of the coefficient matrix. The estimated standard deviation is not
reported in the summary from smf.ols, but can be extracted by

round(np.sqrt(fitStudents.scale),2)

np.float64(3.88)

The simulation example (Example 5.7) can also be extended to check the equa-
tions of Theorem 5.8:

Example 5.10 Simulation continued

In Example 5.7 we looked at simulation from the model

Yi = 10 + 3xi + ε i, ε i ∼ N(0, 52)

In order to calculate the variance estimates we need to calculate x̄ and Sxx:
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np.random.seed(1241)
Sxx = (n-1)*x.var()
print(x.mean(), round(Sxx,2))

1.5 44.92

k = 500
y0 = np.zeros((k,n))
y = y0 + beta0 + beta1*x + np.random.normal(0, 5, size=(k,n))

and we would expect to obtain the variance estimates close to

V[β̂0] = 52
(

1
10

+
1.502

49.91

)
= 3.63

V[β̂1] =
52

49.91
= 0.501.

With simulations we find:

b0 = np.zeros(k)
b1 = np.zeros(k)
sigma = np.zeros(k)
for i in range(k):

D = pd.DataFrame({'x': x, 'y': y[i,:]})
result = smf.ols(formula = 'y ~ x', data=D).fit()
b0[i] = result.params["Intercept"]
b1[i] = result.params["x"]
sigma[i] = math.sqrt(result.scale)

print(round(b0.var(),2), round(b1.var(),2), round(sigma.mean(),2))

3.58 0.46 4.81

We can see that the simulated values are close to the theoretical values. You are
invited to play around with different settings for the simulation, in particular in-
creasing k will increase the accuracy of the estimates of the variances.

The example above shows how Theorem 5.8 can be illustrated by simulation, a
formal proof is given by:
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Proof

Of Theorem 5.8. Using (5-26) we can write the variance of β̂0 as

V(β̂0) = V

[
β0 +

1
n

n

∑
i=1

ε i −
(

∑n
i=1 ε i(xi − x̄)

Sxx

)
x̄

]
, (5-31)

using the definition of the variance (V(X) = E[(X− E[X])2]) and E(ε) = 0 we get

V(β̂0) = V

[
1
n

n

∑
i=1

ε i

]
+ V

[(
∑n

i=1 ε i(xi − x̄)
Sxx

)
x̄
]
−

2 E

[
1
n

n

∑
i=1

ε i

(
∑n

i=1 ε i(xi − x̄)
Sxx

)
x̄

]
,

(5-32)

now use independence between ε i and ε j (i 6= j) to get

V(β̂0) =
σ2

n
+

x̄2σ2 ∑n
i=1(xi − x̄)2

(Sxx)
2 +

x̄σ2

nSxx

n

∑
i=1

(xi − x̄)

=
σ2

n
+

x̄2σ2

Sxx
.

(5-33)

Finally, the variance of β̂1 is (again using the definition of variance and indepen-
dence of the ε’s)

V(β̂1) = V
[

β1 +
∑n

i=1 ε i(xi − x̄)
Sxx

]

=
∑n

i=1(xi − x̄)2 V(ε i)

(Sxx)
2

=
σ2

Sxx
,

(5-34)

and the covariance between the parameters estimates becomes

Cov(β̂0, β̂1) = E
[
(β̂0 − β0)(β̂1 − β1)

]

= E

[(
1
n

n

∑
i=1

ε i − ∑n
i=1 ε i(xi − x̄)

Sxx

)
x̄ ∑n

i=1 ε i(xi − x̄)
Sxx

]

=
x̄

nSxx
E

[
n

∑
i=1

ε i

n

∑
j=1

ε j(xj − x̄)

]
− x̄

(Sxx)
2 E

[
n

∑
i=1

ε2
i (xi − x̄)2

]

=
x̄σ2(nx̄− nx̄)

nSxx
− x̄

(Sxx)
2 σ2

n

∑
i=1

(xi − x̄)2

= − x̄σ2

Sxx
.

(5-35)
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To get an estimate of the residual variance we calculate the expected value of the
residual sum of squares

E(RSS) = E

[
n

∑
i=1

(Yi − (β̂0 + β̂1xi))
2

]
, (5-36)

inserting Yi = β0 + β1xi + ε i and rearranging gives

E(RSS) =
n

∑
i=1

E
[
(−(β̂0 − β0)− (β̂1 − β1)xi + ε i)

2]

=
n

∑
i=1

{
E
[
(β̂0 − β0)

2]+ E
[
(β̂1 − β1)

2] x2
i + E[ε2

i ]+ (5-37)

2 E
[
(β̂0 − β0)(β̂1 − β1)

]
xi − 2 E

[
(β̂0 − β0)ε i

]
− 2 E

[
(β̂1 − β1)ε i

]
xi
}

,

now observe that E
[
(β̂0 − β0)2] = V[β̂0], E

[
(β̂1 − β1)

2] = V[β̂1], E(ε2
i ) = σ2, and

E
[
(β̂0 − β0)(β̂1 − β1)

]
= Cov(β̂0, β̂1), and insert β̂0 and β̂1 in the last two terms

E(RSS) = n V(β̂0) + V(β̂1)
n

∑
i=1

x2
i + nσ2 + 2

n

∑
i=1

Cov
(

β̂0, β̂1
)

xi−

2
n

∑
i=1

{
E
[(

1
n

n

∑
j=1

ε j −
∑2

j=1 ε j(xj − x̄
Sxx

)
ε i

]
− E

[
∑n

j=1 ε j(xj − x̄)
Sxx

ε i

]
xi

}

= σ2 +
nx̄2σ2

Sxx
+

σ2 ∑n
i=1 x2

i
Sxx

+ nσ2 − 2
n

∑
i=1

x̄σ2

Sxx
xi− (5-38)

2
n

∑
i=1

(
σ2

n
− σ2(xi − x̄)

Sxx

)
− 2

n

∑
i=1

σ2(xi − x̄)xi

Sxx
,

now collect terms and observe that ∑ xi = nx̄

E(RSS) = σ2(n + 1) +
σ2

Sxx

n

∑
i=1

(x2
i + x̄2)− 2

nx̄2σ2

Sxx
− 2σ2 − 2

σ2 ∑n
i=1(x2

i − xi x̄)
Sxx

= σ2(n− 1) +
σ2

Sxx

n

∑
i=1

(−x2
i − x̄2 + 2xi x̄)

= σ2(n− 1)− σ2

Sxx
Sxx (5-39)

= σ2(n− 2),

and thus a central estimator for σ2 is σ̂2 = RSS
n−2 .

�

Before we continue with parameter distributions and hypothesis testing, the
next example illustrates the behaviour of the parameter variance estimates:
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Example 5.11 Simulation continued

Consider the following model

Yi = 1 + xi + ε i, ε i ∼ N(0, 1), (5-40)

also assume that xi =
i−1
n−1 , i = 1, . . . , n where n is the number of pairs (xi, yi). We

want to make a simulation experiment for increasing number of pairs, and extract
the parameter variance, parameter covariance and residual variance estimates. In
order to do so we need to extract these numbers from a linear model i Python. This
can be done by:

np.random.seed(134)
x = np.linspace(0, 1, num=10)
y = 1 + x + np.random.normal(0, 1, size=10)
# Fit the model (estimate parameter)
fit = smf.ols(formula = 'y ~ x', data=pd.DataFrame({'x': x, 'y': y})).fit()
# Print summary of model fit
print(fit.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.003
Model: OLS Adj. R-squared: -0.122
No. Observations: 10 F-statistic: 0.02230
Covariance Type: nonrobust Prob (F-statistic): 0.885
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 1.8541 0.445 4.162 0.003 0.827 2.881
x 0.1122 0.751 0.149 0.885 -1.620 1.844
==============================================================================

# Residual standard deviation
sigma = math.sqrt(fit.scale)
# Estimated standard deviation of parameters
print(round(fit.bse,2))

Intercept 0.45
x 0.75
dtype: float64



Chapter 5 5.3 VARIANCE OF ESTIMATORS 229

Now let’s return to the simulation example, the number of independent variables
(x) is increased and we draw the residual from the standard normal distribution, in
this particular case we can find Sxx as a function of n, and compare the expected
values (fix σ2 = 1) with the simulation results

np.random.seed(134)
k = 500
sigma_beta = np.zeros(shape=(k,2))
sigma = np.zeros(k)
n = np.arange(3, k+3)
for i in range(k):

x = np.linspace(0, 1, num=n[i])
y = 1 + x + np.random.normal(0, 1, size=n[i])
D = pd.DataFrame({'x': x, 'y': y})
fit = smf.ols(formula = 'y ~ x', data=D).fit()
sigma_beta[i,:] = fit.bse
sigma[i] = math.sqrt(fit.scale)
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We see that the residual variance converge to the true value with smaller and smaller
variation, while the parameter variances converge to zero. In a plot like this we can
therefore see the gain from obtaining more observations of the model.

Again you are encouraged to change some of the specifications of the simulation set
up and see what happens.
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5.4 Distribution and testing of parameters

The regression model is given by

Yi = β0 + β1xi + εi, εi ∼ N(0, σ2), (5-41)

where the estimators of the parameters and their variances are given by The-
orems 5.4 and 5.8. Since the estimators are linear functions of normal random
variables (εi) they will also be normal random variables. To give the full stochas-
tic model we need to use the estimate of the residual variance, and take the
uncertainty of this estimator into account when constructing tests.

As we already saw in Example 5.7 we cannot expect to get the true value of
the parameter, but there will be some deviations from the true value due to
the stochastic nature of the model/real world application. The purpose of this
section is to give the precise description of the parameter distributions. We aim
at testing hypothesis of the type

H0,i : βi = β0,i, (5-42)

against some alternatives. The general remarks on hypothesis testing from
Chapter 3 still apply, but we will go through the specific construction for lin-
ear regression here.

The central estimator of σ2 (Equation (5-30)) is χ2-distributed with n − 2 de-
grees of freedom. In order to test the hypothesis in Equation (5-42) we need
the normalized distance to a null hypothesis (i.e the distance from the observed
estimate β̂0,i to the value under the null hypothesis β0,i). From Theorem 5.8 the
standard deviations of the parameter estimates are found to

σ̂β0 =

√
σ̂2

n
+

x̄2σ̂2

Sxx
= σ̂

√
1
n
+

x̄2

∑n
i=1(xi − x̄)2 , (5-43)

σ̂β1 =

√
σ̂2

Sxx
= σ̂

√
1

∑n
i=1(xi − x̄)2 , (5-44)

under the null hypothesis the normalized (with standard deviations) distance
between the estimators and the true values are both t-distributed with n − 2
degrees of freedom, and hypothesis testing and confidence intervals are based
on this t-distribution:
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Theorem 5.12 Test statistics

Under the null hypothesis (β0 = β0,0 and β1 = β0,1) the statistics

Tβ0 =
β̂0 − β0,0

σ̂β0

, (5-45)

Tβ1 =
β̂1 − β0,1

σ̂β1

, (5-46)

are t-distributed with n − 2 degrees of freedom, and inference should be
based on this distribution.

Proof

The proof is omitted, but rely on the fact that β̂ j is normally distributed, σ̂2
β j

is re-

lated to the χ2-distribution, and (provided independence) a standard normal ran-
dom variable divided by the square root of a χ2 distributed random variable is t-
distributed.

�

In this material we only test two-sided hypothesis. The hypothesis can be con-
cluded using p-values or critical values, in the same way as we saw for hypoth-
esis regarding mean values in Chapter 3 Section 3.1.7.

Example 5.13 Example 5.9 cont.

We continue with the data from Examples 5.5 and 5.9, where we found the parame-
ter estimates and the variance estimates. We want to test the hypotheses

H00 : β0 = 0 vs. H10 : β0 6= 0, (5-47)

H01 : β1 = 1 vs. H11 : β1 6= 1, (5-48)

on confidence level α = 0.05. With reference to Examples 5.5 and 5.9, and Theorem
5.12, we can calculate the t-statistics as

tobs,β0 =
−119.96
18.897

= −6.35, (5-49)

tobs,β1 =
1.113− 1

0.1059
= 1.07. (5-50)

H00 is rejected if |tobs,β0 | > t1−α/2, and H01 is rejected if |tobs,β1 | > t1−α/2, as usual we
can find the critical values by:
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round(stats.t.ppf(0.975, df=10-2), 2)

np.float64(2.31)

and we see that with significance level α = 0.05, then H00 is rejected and H01 isn’t. If
we prefer p-values rather than critical values, these can be calculated by:

pv0 = 2 * (1 - stats.t.cdf(6.35, df=10-2))
pv1 = 2 * (1 - stats.t.cdf(1.07, df=10-2))
print(round(pv0,5), round(pv1,2))

0.00022 0.32

The p-value for the intercept (β0) is less than 0.05, while the p-value for β1 is greater
than 0.05, hence we conclude that β0 6= 0, but we cannot reject that β1 = 1. The
summary of linear model buildin function, also give t-statistics and p-values (see
Example 5.5). The test statistic and the p-value for H01 is different from the one
we obtained above. The reason for this is that smf.ols tests the default hypothesis
H0i : βi = 0 against the alternative H1i : βi 6= 0. Even though this choice is rea-
sonable in many situations it does not cover all situation, and we need to calculate
p-values from the summary statistics ourselves if the hypotheses are different from
the default ones.

Method 5.14 Level α t-tests for parameter

1. Formulate the null hypothesis: H0,i : βi = β0,i, and the alternative hy-
pothesis H1,i : βi 6= β0,i

2. Compute the test statistic tobs,βi =
β̂i−β0,i

σ̂βi

3. Compute the evidence against the null hypothesis

p-valuei = 2 · P(T > |tobs,βi |) (5-51)

4. If p-valuei < α reject H0,i, otherwise accept H0,i

In many situations we will be more interested in quantifying the uncertainty of
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the parameter estimates rather than testing a specific hypothesis. This is usually
given in the form of confidence intervals for the parameters:

Method 5.15 Parameter confidence intervals

(1− α) confidence intervals for β0 and β1 are given by

β̂0 ± t1−α/2 · σ̂β0 , (5-52)

β̂1 ± t1−α/2 · σ̂β1 , (5-53)

where t1−α/2 is the (1− α/2)-quantile of a t-distribution with n− 2 degrees
of freedom. Where σ̂β0 and σ̂β1 are calculated from the results in Theorem
5.8, and Equations (5-43) and (5-44).

Remark 5.16

We will not show (prove) the results in Method 5.15, but see Remark 3.34.

Example 5.17 Example 5.13 cont.

Based on Method 5.15 we immediately find the 95% confidence intervals for the
parameters

Iβ0 = −119.96± t0.975 · 18.9 = [−163.5,−76.4],

Iβ1 = 1.113± t0.975 · 0.1059 = [0.869, 1.36],

with the degrees of freedom for the t-distribution equal 8, and we say with high
confidence that the intervals contain the true parameter values. Of course we can
get these directly from the result returned by ols.smf:

print(round(fitStudents.conf_int(alpha=0.05),2))

0 1
Intercept -163.53 -76.38
x 0.87 1.36
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5.4.1 Confidence and prediction intervals for the line

It is clearly of interest to predict outcomes of future experiments. Here we need
to distinguish between prediction intervals, where we predict the outcome of
one single experiment, and confidence intervals, where we predict the mean
value of future outcomes. In the latter case we only need to account for the
uncertainty in the parameter estimates while in the first case we will also need
to account for the uncertainty of the error (the random part εi).

If we conduct a new experiment with xi = xnew the expected outcome is

ŷnew = β̂0 + β̂1xnew (5-54)

where the only source of variation comes from the variance of the parameter
estimates, and we can calculate the variance of Ŷnew

V(Ŷnew) = V(β̂0 + β̂1xnew)

= V(β̂0) + V(β̂1xnew) + 2 Cov(β̂0, β̂1xnew),
(5-55)

now use the calculation rules for variances and covariances (Section 2.7), and
insert the variances and the covariance from Theorem 5.8

V(Ŷnew) =
σ2

n
+

σ2x̄2

Sxx
+

σ2x2
new

Sxx
− 2

σ2x̄xnew

Sxx

= σ2
(

1
n
+

(xnew − x̄)2

Sxx

)
,

(5-56)

to find the variance of a single new point, we are using

Ynew = β̂0 + β̂1xnew + εnew, (5-57)

and therefore need to add the variance of the residuals (εnew is independent
from β̂0 and β̂1)

V(Ynew) = σ2
(

1 +
1
n
+

(xnew − x̄)2

Sxx

)
. (5-58)

When we construct confidence and prediction intervals we need to account for
the fact that σ2 is estimated from data and thus use the t-distribution:
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Method 5.18 Intervals for the line

The (1-α) confidence interval for the line β̂0 + β̂1xnew is

β̂0 + β̂1xnew ± t1−α/2σ̂

√
1
n
+

(xnew − x̄)2

Sxx
, (5-59)

and the (1-α) prediction interval is

β̂0 + β̂1xnew ± t1−α/2σ̂

√
1 +

1
n
+

(xnew − x̄)2

Sxx
, (5-60)

where t1−α/2 is the (1− α/2)-quantile of the t-distribution with n− 2 degrees
of freedom.

Remark 5.19

We will not show the results in Method 5.18, but use Equations (5-54)–(5-58)
and Remark 3.34.

As illustrated in Figure 5.2 the confidence interval width will approach zero
for an increasing number of data points (n) increase or as Sxx increase (actu-
ally, in most situations Sxx will also increase as n increase). Note also, that the
confidence and prediction interval widths are smallest when xnew = x̄. The pre-
diction interval width will approach 2z1−α/2 · σ as n → ∞. The difference be-
tween the intervals are that the prediction interval covers a new observation in
(1− α) · 100% of the times, while the confidence interval is expected to cover the
true regression line (1− α) · 100% of the times. One important point is: when we
have calculated the prediction interval based on some particular sample, then
we actually don’t know the probability of this interval covering new observa-
tions. What we know is: if we repeat the experiment, then in (1− α) · 100% of
the times a new observation will be covered (we make a new observation each
time). Same goes for the confidence interval: we don’t know if the true regres-
sion line is covered by a particular interval, we only know that if we repeat the
experiment, then in (1− α) · 100% of the times the true regression line will be
covered.

In the following: first an example on calculating confidence and prediction in-
tervals, second an example on the width of the intervals, and finally Example
5.22 on the prediction interval coverage, are given.
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Figure 5.2: Best linear fit (red line), truth (blue line), 95% prediction interval for
the points (light grey area), 95 % CI for the line (dark grey area), and observed
values (black dots), for simulated data (see Example 5.21).

Example 5.20 Student height and weight Example (5.17 cont.)

With reference to Example 5.17 suppose we want to calculate prediction and confi-
dence intervals for the line for a new student with xnew = 200 cm, the prediction is
ŷnew = 102.6 kg and the 95% confidence and prediction intervals become

Ipred = −120 + 1.113 · 200± t0.975(8) · 3.88

√
1 +

1
10

+
(178− 200)2

1342
= [91.8, 113],

(5-61)

Iconf = −120 + 1.113 · 200± t0.975(8) · 3.88

√
1

10
+

(178− 200)2

1342
= [96.5, 109],

(5-62)

where t0.975 is the 0.975-quantile of a t-distribution with n− 2 degrees of freedom.

The intervals can be calculated directly by:
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new_data = pd.DataFrame({'x': [200]})

# Get prediction and confidence intervals
pd.set_option("display.float_format", None) ## unset option
pred = fitStudents.get_prediction(new_data).summary_frame(alpha=0.05)
print(round(pred,2))

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 102.59 2.63 96.52 108.66 91.77 113.41

in the output mean refer to the predicted expected value, mean_se refer to the stan-
dard error of the predicted expected value, mean_ci_.. refer to confidence intervals
while obs_ci_.. refer to prediction intervals.

Example 5.21 Simulation

Figure 5.2 illustrates the difference between the confidence and prediction intervals
for simulated data, with different numbers of observations. The simulated model is

yi = 10 + 2xi + ε i, ε i ∼ N(0, 52). (5-63)

When n increases the width of the confidence interval for the line narrows and
approaches 0, while the prediction interval width does not approach 0, but rather
2z1−α/2σ. Further, the width of the prediction interval will always be larger than the
width of the confidence interval.

Example 5.22 Prediction interval coverage

In this example it is illustrated that we actually don’t know the probability that a
prediction interval covers new observations, when it is calculated using a sample
(i.e. we have a realization of the prediction interval). First, a prediction interval is
calculated using a single sample and it is investigated how many of k new observa-
tions falls inside it:
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np.random.seed(129)
n = 30
beta0 = 10
beta1 = 3
sigma = 0.5
# Generate some input values
x = np.random.uniform(-10, 10, n)
# Simulate output values
y = beta0 + beta1*x + np.random.normal(0, sigma, size=n)
# Fit a simple linear regression model to the sample
D = pd.DataFrame({'x': x, 'y': y})
fit = smf.ols(formula = 'y ~ x', data=D).fit()

# The number of new observations
k = 10000
# Generate k new input values
xnew = pd.DataFrame({'x': np.random.uniform(-10, 10, k)})
# Calculate the prediction intervals for the new input values
PI = fit.get_prediction(xnew).conf_int(obs=True)
# Simulate new output observations
ynew = beta0 + beta1*xnew['x'] + np.random.normal(0, sigma, size=k)
# Calculate the fraction of times the prediction interval covered the
# new observation
y_within_ci = (lambda y, ci_low, ci_high: (y > ci_low) & (y < ci_high))(ynew, PI[:,0], PI[:,1])
print(sum(y_within_ci)/k)

0.8162

We see that the interval covered only 81.6% of the new observations, which is quite
a bit below 95% (per default .get_prediction use α = 5%).

Now, lets repeat the sampling, so we make a new sample k times and each time
calculate a new fit and prediction interval, and each time check if a new observation
falls inside it:
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# The number of simulated samples
k = 10000
# Define function to make model and check new y observation
def check_newobs_within_ci():

# The number of observations and the parameters
n = 30
beta0 = 10
beta1 = 3
sigma = 0.5
# Generate some input values
x = np.random.uniform(-10, 10, n)
# Simulate output values
y = beta0 + beta1*x + np.random.normal(0, sigma, size=n)
# Fit a simple linear regression model to the sample
D = pd.DataFrame({'x': x, 'y': y})
fit = smf.ols(formula = 'y ~ x', data=D).fit()
# Generate ONE new input value
xnew = pd.DataFrame({'x': np.random.uniform(-10, 10, 1)})
# The prediction interval for the new value
PI = fit.get_prediction(xnew).conf_int(obs=True)
# Simulate a single new observations
ynew = beta0 + beta1*xnew['x'] + np.random.normal(0, sigma, size=1)
# Check if the new observation was inside the interval
y_within_ci = (lambda y, ci_low, ci_high: (y > ci_low) & (y < ci_high))(ynew, PI[:,0], PI[:,1])
return y_within_ci

# Replicate the calculation 10000 times
replicated_results = [check_newobs_within_ci() for _ in range(k)]

# The fraction of covered new observations
print(sum(replicated_results)/k)

0 0.9536
Name: x, dtype: float64

It is found that coverage is now very close to the expected 95% and this is indeed
the way the coverage probability should be interpreted: with repeated sampling the
probability is 1− α that a prediction interval will cover a randomly chosen new ob-
servation. Same goes for confidence intervals (of any kind): with repeated sampling
the probability is 1− α that a confidence interval will cover the true value.
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5.5 Matrix formulation of simple linear regression

The simple linear regression problem can be formulated in vector-matrix nota-
tion as

Y = Xβ + ε, ε ∼ N(0, σ2I), (5-64)

or



Y1
...

Yn


 =




1 x1
...

...
1 xn



[

β0
β1

]
+




ε1
...

εn


 , εi ∼ N(0, σ2). (5-65)

One of the advantages of the matrix formulation is that the analysis generalize
to higher dimensions in a straight forward way (i.e. more xs and parameters as
in the following chapter). The residual sum of squares is given by

RSS = εTε = (Y − Xβ)T(Y − Xβ), (5-66)

and the parameter estimators are given by:

Theorem 5.23

The estimators of the parameters in the simple linear regression model are
given by

β̂ = (XTX)−1XTY , (5-67)

and the covariance matrix of the estimates is

V[β̂] = σ2(XTX)−1, (5-68)

and central estimate for the error variance is

σ̂2 =
RSS

n− 2
. (5-69)

Here V[β̂] is a matrix with elements (V[β̂])11 = V[β̂0], (V[β̂])22 = V[β̂1], and
(V[β̂])12 = (V[β̂])21 = Cov[β̂0, β̂1].

When we want to find the minimum of RSS, we again need to differentiate RSS
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with respect to the parameters

∂RSS
∂β

= −2XT(Y − Xβ)

= −2(XTY − XTXβ).
(5-70)

Solving for β gives

β̂ = (XTX)−1XTY , (5-71)

taking the expectation of β̂ we get

E[β̂] = E[(XTX)−1XTY ]

= (XTX)−1XT E[Xβ + ε]

= (XTX)−1XTXβ

= β.

(5-72)

The variance of the parameters estimates are given by

V[β̂] = V[(XTX)−1XTY ]

= (XTX)−1XT V[Xβ + ε]X(XTX)−T

= (XTX)−1XT(V[Xβ] + V[ε])X(XTX)−T

= (XTX)−1XTσ2IX(XTX)−T

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1.

(5-73)

Again a central estimate for σ2 is

σ̂2 =
RSS(β̂)

n− 2
, (5-74)

and the estimate of the parameter covariance matrix is

Σ̂β = σ̂2(XTX)−1. (5-75)

Marginal tests (H0 : βi = βi,0) are constructed by observing that

β̂i − βi,0√
(Σ̂β)ii

∼ t(n− 2). (5-76)

The matrix calculations are illustrated in the next example.
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Example 5.24 Student height and weight

To illustrate how the matrix formulation works in student height and weight data is
worked through below:

# Data
y = student['y']
n = len(student['y'])
X = np.array([np.repeat(1,n),student['x']]).T

# Parameter estimates and variance
beta = np.linalg.inv(X.T@X)@X.T@y
e = y - X@beta
s = math.sqrt(np.sum(e**2) / (n - 2))
Vbeta = s**2 * np.linalg.inv(X.T@X)
sbeta = np.sqrt(Vbeta.diagonal())
Tstat = beta / sbeta
pval = 2 * (1 - stats.t.cdf(np.abs(Tstat), df = n-2))

# Print the results
coefMat = np.array([beta, sbeta, Tstat, pval]).T
col_names = ["Estimates","Std.Error","t.value","p.value"]
row_names = ["beta0", "beta1"]
coefMat = pd.DataFrame(coefMat,columns = col_names, index = row_names)
pd.set_eng_float_format(accuracy=3)
print(coefMat)

Estimates Std.Error t.value p.value
beta0 -119.958E+00 18.897E+00 -6.348E+00 221.088E-06
beta1 1.113E+00 105.939E-03 10.504E+00 5.875E-06

print(round(s,2))

3.88

pd.set_option("display.float_format", None) ## unset option
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# Prediction and confidence interval
xnew = np.array([1, 200]).T
ynew = xnew@beta
Vconf = xnew@Vbeta@xnew.T
Vpred = Vconf + s**2
se_pred = np.sqrt(np.array([Vconf, Vpred]))
np.round(se_pred, 2)

array([2.630, 4.690])

5.6 Correlation

In the analysis above we focus on situations where we are interested in one
variable (y) as a function of another variable (x). In other situations we might
be more interested in how x and y vary together. Examples could be ecosys-
tems, where the number of predators is a function of the number of preys, but
the reverse relation is also true, further both of these numbers are affected by
random variations and knowledge of one only gives partial knowledge of the
other. Another example is individual student grade in 2 different courses, be-
fore any grade has been given we will expect that a high grade in one course
will imply a high grade in the other course, but none of them is controlled or
known in advance.

In the cases above we talk about correlation analysis and to this end we will
need the sample correlation coefficient, as defined in Section 1.4.3

ρ̂ =
1

n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
. (5-77)

In Section 1.4.3 we notated sample correlation with r, but here we use ρ̂, since
it is an estimate for the correlation ρ (see Section 2.8), and imply that there is a
meaningful interpretation of the ρ.

5.6.1 Inference on the sample correlation coefficient

In order to answer the question: are X and Y correlated? We will be interested
in constructing a test of the type

H0 : ρ = 0, H1 : ρ 6= 0. (5-78)
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Consider the model

Yi = β0 + β1Xi + εi, εi ∼ N(0, σ2), (5-79)

in this case we can rewrite the sample correlation as

ρ̂ =
1

n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)

=
Sxx

n− 1
1

Sxx

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)

=
Sxx

n− 1
1

sxsy
β̂1

=
sx

sy
β̂1,

(5-80)

implying that the hypothesis (5-78) can be tested by testing the hypothesis

H0 : β1 = 0; H1 : β1 6= 0. (5-81)

since clearly the relationship in Equation (5-79) can be reversed. It should be
noted that we cannot use the test to construct a confidence interval for ρ.

It should be stressed that correlation does not imply causality, it just implies
that the variables x and y vary together. As an example consider the number
of beers sold at the university bar and the number of students attending the
introductory course in statistics. Let’s say that both numbers have increased
and therefore have a high correlation coefficient, but it does not seem reasonable
to conclude that students are more interested in statistics when drinking beers.
A closer look might reveal that the number of enrolled students have actually
increased and this can indeed explain the increase in both numbers.

5.6.2 Correlation and regression

In the linear regression models we would like to measure how much of the
variation in the outcome (Y) is explained by the input (x). A commonly used
measure for this is the coefficient of determination (explanation) or R2-value
(see also the Python summary in Example 5.5).
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Definition 5.25 Coefficient of determination R2

The coefficient of determination expresses the proportion of variation in the
outcome (Y) explained by the regression line

r2 = 1− ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 . (5-82)

In order to find this we will split the variance of y into a component due to the
regression line and a component due to the residual variation

s2
y =

1
n− 1

n

∑
i=1

(yi − ȳ)2

=
1

n− 1

n

∑
i=1

(β̂0 + β̂1xi + ei −
1
n

n

∑
i=1

(β̂0 + β̂1xi + ei))
2

=
1

n− 1

n

∑
i=1

(β̂1(xi − x̄) + ei)
2

= β̂2
1s2

x +
n− 2
n− 1

σ̂2,

(5-83)

where the first term on the right hand side is the variability explained by the
regression line and the second term is the residual variation. Dividing with the
variance of Ygives a splitting in the relative variation from each of the terms. If
we write out the variation explained by the regression line we get

β̂2
1s2

x
s2

y
=

(
∑n

i=1(yi − ȳ)(xi − x̄)
∑n

i=1(xi − x̄)2

)2 ∑n
i=1(xi − x̄)2

n− 1
n− 1

∑n
i=1(yi − ȳ)2

=

(
1

n− 1

n

∑
i=1

(yi − ȳ)(xi − x̄)

)2
n− 1

∑n
i=1(xi − x̄)2

n− 1
∑n

i=1(yi − ȳ)2

=

(
1

n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

))2

= ρ̂2.

(5-84)

We can therefore conclude that the proportion of variability (R2) in Y explained
by the regression line is equal to the squared sample correlation coefficient (ρ̂2).
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Example 5.26 Student weight and height (Example 5.20 cont.)

With reference to Example 5.20 above we can calculate the correlation coefficient by:

np.round(np.corrcoef(student['x'], student['y'])[0, 1]**2,3)

np.float64(0.932)

or we can base our calculations on the estimated slope:

round(fitStudents.params["x"]**2 * student['x'].var() / student['y'].var(),3)

np.float64(0.932)

or we can find it directly in the summary of the regression model (see Example 5.5):
where the number is called R-squared.

5.7 Model validation

So far we have discussed how to estimate parameters, predict future values,
make inference etc. in the model

Yi = β0 + β1xi + εi, εi ∼ N(0, σ2). (5-85)

In all we have done so far the basic assumption is that the residuals are normally
distributed with zero mean and constant variance, and further the residuals are
mutually independent. These are assumptions which should be checked and
if the assumptions are not fulfilled some actions should be taken in order to
fix this. This is called model validation or residual analysis and is exactly the same
idea behind the validation needed for the mean model used for t-tests in Section
3.1.8, though here including a few more steps.

The normality assumption can be checked by a normal q-q plot, and the con-
stant variance assumption may be checked by plotting the residuals as a func-
tion of the fitted values. The normal q-q plot have been treated in Section 3.1.8
and should be applied equivalently. Plotting the residuals as a function of the
fitted values should not show a systematic behaviour, this means that the range
should be constant and the mean value should be constant, as illustrated in the
following example:
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Example 5.27 Residuals analysis

We consider data generated from the following three models

Y1,i = β0 + β1x1,i + ε i, ε i ∼ N(0, 1), (5-86)

Y2,i = β0 + β1x1,i + β2x2,i + ε i, ε i ∼ N(0, 1), (5-87)

Y3,i = eβ0+β1x1,i+εi , ε i ∼ N(0, 1) (5-88)

In all cases we fit the model

Yi = β0 + β1x1,i + ε i, ε i ∼ N(0, σ2), (5-89)

to the data: from the first model we would expect that the residual analysis do not
show any problems, for the second model we have a linear dependence which is
not included in the model and we should see this in the residual analysis, and the
third is a non-linear function of the residuals as well as the regressors and one way
to handle this will be discussed.

The first model is simulated, estimated and analysed by (β0 = 0, β1 = 1, and σ2 = 1):

np.random.seed(134)
n = 100
x1 = np.linspace(1, 10, n)
y = x1 + np.random.normal(0, 1, size=n)
D = pd.DataFrame({'x': x1, 'y': y})
fit = smf.ols(formula = 'y ~ x', data=D).fit()
# Get the predictions (fitted values)
ypred = fit.predict(D) # or fit.fittedvalues
# Plot the Q-Q plot and the residuals vs. fitted values
fig, ax = plt.subplots(1,2)
# Q-Q plot of the residuals
sm.qqplot(y - ypred, line="q", a=1/2, ax=ax[0])
ax[0].set_title("Q-Q plot")
# Scatter plot
ax[1].scatter(ypred, y - ypred)
ax[1].set_xlabel("Fitted values")
ax[1].set_ylabel("Residuals")
ax[1].set_title("Residuals vs Fitted values")
plt.tight_layout()
plt.show()
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As we can see there is no serious departure from normality and there are no patterns
in the residuals as a function of the fitted values.

The second model (with β0 = 0, β1 = 1, β2 = 0.5 and σ2 = 1) is simulated, estimated
and analysed by (plot functions omitted):

np.random.seed(134)
n = 100
x1 = np.linspace(1, 10, n)
x2 = x1**2
y = x1 + 0.5 * x2 + stats.norm.rvs(loc = 0, scale = 1, size=n)
D = pd.DataFrame({'x': x1, 'y': y})
fit = smf.ols(formula = 'y ~ x', data=D).fit()
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Residuals vs Fitted values

We see some departure from normality, but also that the residuals are related to the
fitted values with a clear pattern. In the next chapter we will learn that we should
find the hidden dependence (x2) and include it in the model.



Chapter 5 5.7 MODEL VALIDATION 249

The third model (with β0 = 0, β1 = 1, β2 = 0.5 and σ2 = 1) is simulated, estimated
and analysed by (plot function omitted):

np.random.seed(134)
n = 100
x1 = np.linspace(4, 10, n)
y = np.exp( 0.2 * x1 + np.random.normal(0, 0.15, size=n))
D = pd.DataFrame({'x': x1, 'y': y})
fit = smf.ols(formula = 'y ~ x', data=D).fit()
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Residuals vs Fitted values

We see some departure from normality, and also that the variance increases as a
function of the fitted values. When the variance is clearly related with the fitted
values one should try to transform the dependent variable. The following do the
analysis based in log-transformed data:

np.random.seed(134)
n = 100
x1 = np.linspace(4, 10, n)
y = np.exp( 0.2 * x1 + np.random.normal(0, 0.15, size=n))
y = np.log(y)
D = pd.DataFrame({'x': x1, 'y': y})
fit = smf.ols(formula = 'y ~ x', data=D).fit()
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From the q-q plot it is found that the distribution is now very close to a normal
distribution compared to previous q-q plot. And, as we can see the residuals are no
longer related clearly to the fitted values.

Method 5.28 Model validation (or residual analysis)

1. Check the normality assumption with a q-q plot of the residuals

2. Check the systematic behaviour by plotting the residuals ei as a func-
tion of fitted values ŷi

Remark 5.29 Independence

In general independence should also be checked, while there are ways to do
this we will not discuss them here.
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Chapter 6

Multiple Linear Regression

In Chapter 5 we described the linear regression model, when the outcome (Y) is
a linear function of one regressor (x). It is natural to extend this model to include
more than one regressor, in general we can write

Yi = β0 + β1x1,i + · · ·+ βpxp,i + εi, εi ∼ N(0, σ2), (6-1)

where as usual we assume that the residuals (εi) are independent and identi-
cally distributed (i.i.d.) normal random variables with zero mean and some
unknown constant variance (σ2). Note, that this is the assumption for all ran-
dom variable error terms in models presented in this chapter, however it is not
noted for every model.

The model in Equation (6-1) is referred to as the General Linear Model (GLM),
and is closely related to the ANOVA covered in a later chapter. As we will see
in Section 6.2, we can also use the approach to approximate non-linear functions
of the regressors, i.e.

Yi = f (xi) + εi, εi ∼ N(0, σ2). (6-2)

The optimal set of parameters for the multiple linear regression model is found
by minimising the residual sum of squares

RSS(β0, . . . , βp) =
n

∑
i=1

[
Yi − (β0 + β1x1,i + · · ·+ βpxp,i)

]2 , (6-3)

where n is the number of observations. The general problem is illustrated in
Figure 6.1, where the black dots represent the observations (yi), the blue and red
lines represent errors (ei) (the ones we minimize), and the surface represented
by the grey lines is the optimal estimate (with p = 2)

ŷi = β̂0 + β̂1x1,i + β̂2x2,i, (6-4)
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ei = yi − ŷi

Figure 6.1: Conceptual plot for the multiple linear regression problem (red lines,
ei > 0, blue lines (ei < 0).

or

yi = ŷi + ei, (6-5)

again we put a “hat” on the parameters to emphasize that we are dealing with
parameter estimates (or estimators), as a result of minimising Equation (6-3)
with respect to β0, . . . , βp.

Let’s have a look at a small example:

Example 6.1

The car manufacture in Example 5.1 in Chapter 5 constructed a linear model for
fuel consumption as a function of speed, now a residual analysis revealed that the
residuals were not independent of the fitted values and therefore the model should
be extended. It is realized that the fuel consumption is a function of wind speed as
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well as the speed of the car, and a new model could be formulated as

Yi = β0 + β1x1,i + β2x2,i + ε i (6-6)

where x1,i is the speed, and x2,i is the wind speed (relative to the car). Another
possibility is that the model should in fact not be linear in the speed, but rather
quadratic

Yi = β0 + β1x1,i + β2x2
1,i + ε i (6-7)

= β0 + β1x1,i + β2x2,i + ε i, (6-8)

where x2,i is now the squared speed. Both models ((6-6) and (6-7)) are linear in the
parameters (β0, β1, β2).

The example above illustrate that linearity refers to linearity in the parameters,
not the regressors. E.g. the model

Yi = β0 + β2 log(xi) + εi, (6-9)

is a linear model, while

Yi = β0 + log(xi + β2) + εi, (6-10)

is not a linear model.

6.1 Parameter estimation

Just as in the case of simple linear regression the optimal parameters are the
parameters that minimize the residual sum of squares (RSS), this is equivalent
to equating the partial derivatives of RSS (Equation (6-3)) with zero, i.e.

∂RSS
∂β j

= 0; j = 0, 1, . . . , p, (6-11)

which will give us p + 1 equations (the partial derivatives) in p + 1 unknowns
(the parameters)

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)

]
= 0, (6-12)

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)x1,i

]
= 0, (6-13)

...

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)xp,i

]
= 0, (6-14)
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the Equations (6-12)-(6-14) are referred to as the normal equations, and as we
can see these are a system of linear equations and thus best solved by methods
of linear algebra. The matrix formulation is covered in Section 6.6, but for now
we will just assume that Python is able to solve the normal equations and give
the correct parameter estimates, standard errors for the parameter estimates,
etc.

When the εi’s are independent identically normally distributed, we can con-
struct tests for the individual parameters, assuming we know the parameter
estimates and their standard errors:

Theorem 6.2 Hypothesis tests and confidence intervals

Suppose the we are given parameter estimates (β̂0, . . . , β̂p) and their corre-
sponding standard errors (σ̂β0 , . . . , σ̂βp), then under the null hypothesis

H0,i : βi = β0,i, (6-15)

the t-statistic

Ti =
β̂i − β0,i

σ̂βi

, (6-16)

will follow the t-distribution with n− (p + 1) degrees of freedom, and hy-
pothesis testing and confidence intervals should be based on this distribu-
tion. Further, a central estimate for the residual variance is

σ̂2 =
RSS(β̂0, . . . , β̂p)

n− (p + 1)
. (6-17)

The interpretation of multiple linear regression in Python is illustrated in the
following example:

Example 6.3

The data used for Figure 6.1 is given in the table below

x1 0.083 0.409 0.515 0.397 0.223 0.292 0.584 0.491 0.923 0.280
x2 0.625 0.604 0.077 0.414 0.343 0.202 0.840 0.266 0.831 0.385
y 0.156 1.234 0.490 1.649 0.500 0.395 1.452 0.416 1.390 0.234

x1 0.772 0.857 0.758 0.850 0.409 0.055 0.578 0.745 0.886 0.031
x2 0.821 0.308 0.440 0.865 0.111 0.970 0.192 0.939 0.149 0.318
y 1.574 0.349 1.287 1.709 0.323 1.201 1.210 1.787 0.591 0.110



Chapter 6 6.1 PARAMETER ESTIMATION 255

We assume the model

Yi = β0 + β1x1,i + β2x2,i + ε i, ε i ∼ N(0, σ2). (6-18)

In order to estimate parameters we would write:

# Read data
data = {
'x1' : [0.083, 0.409, 0.515, 0.397, 0.223, 0.292, 0.584, 0.491, 0.923,

0.280, 0.772, 0.857, 0.758, 0.850, 0.409, 0.055, 0.578, 0.745,
0.886, 0.031],

'x2' : [0.625, 0.604, 0.077, 0.414, 0.343, 0.202, 0.840, 0.266, 0.831,
0.385, 0.821, 0.308, 0.440, 0.865, 0.111, 0.970, 0.192, 0.939,
0.149, 0.318],

'y' : [0.156, 1.234, 0.490, 1.649, 0.500, 0.395, 1.452, 0.416, 1.390,
0.234, 1.574, 0.349, 1.287, 1.709, 0.323, 1.201, 1.210, 1.787,
0.591, 0.110]

}

df = pd.DataFrame(data)

# Parameter estimation
fit = smf.ols(formula = 'y ~ x1 + x2', data = df).fit()

# Summary of fit (parameter estimates, standard error, p-values, etc.)
print(fit.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.632
Model: OLS Adj. R-squared: 0.589
No. Observations: 20 F-statistic: 14.62
Covariance Type: nonrobust Prob (F-statistic): 0.000203
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -0.1176 0.212 -0.556 0.586 -0.564 0.329
x1 0.8274 0.304 2.719 0.015 0.185 1.470
x2 1.2393 0.293 4.236 0.001 0.622 1.857
==============================================================================
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The interpretation of the output is exactly the same as in the simple linear regression.
The first column gives the parameter estimates (β̂0, β̂1, β̂2), second column gives the
standard error of the parameter estimates (σ̂β0 , σ̂β1 , σ̂β2), third column gives the t-
statistics for the standard hypothesis H0,i : βi = 0, column four gives the p-value
for the two-sided alternative, and finally columns 5-6 give 95% confidence intervals.
We can therefore conclude that the effect of x1 and x2 are both significant on a 5%
confidence level.

Method 6.4 Level α t-tests for parameters

1. Formulate the null hypothesis: H0,i : βi = β0,i, and the alternative hy-
pothesis H1,i : βi 6= β0,i

2. Compute the test statistic tobs,βi =
β̂i−β0,i

σ̂βi

3. Compute the evidence against the null hypothesis

p-valuei = 2P(T > |tobs,βi |) (6-19)

4. If the p-valuei < α reject H0,i, otherwise accept H0,i

In many situations we will be more interested in quantifying the uncertainty of
the parameter estimates rather than testing a specific hypothesis. This is usually
given in the form of confidence intervals for the parameters:

Method 6.5 Parameter confidence intervals

(1− α) confidence interval for βi is given by

β̂i ± t1−α/2 σ̂βi , (6-20)

where t1−α/2 is the (1 − α/2)-quantile of a t-distribution with n − (p + 1)
degrees of freedom.
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Remark 6.6 (On finding β̂i and σβ̂i
in methods 6.4 and 6.5)

In Chapter 5 we were able to formulate the exact formulas for β̂i and σ̂β̂i
, in

a multiple linear regression setting we simply use Python (smf.ols), to find
these values.
The explicit formulas are however given in the matrix formulation of the
linear regression problem in Section 6.6.

Example 6.7

For our example the 95% confidence intervals become (t1−α/2 = 2.110)

Iβ0 = −0.118± 2.110 · 0.212, (6-21)

Iβ1 = 0.827± 2.110 · 0.304, (6-22)

Iβ2 = 1.239± 2.110 · 0.293, (6-23)

or using the software (for β0):

# Calculations
CI = - 0.118 + np.array([-1,1]) * stats.t.ppf(0.975, df = 17) * 0.212
print(CI)

[-0.565 0.329]

or directly using the highlevel method (for β0, β1, and β2):

print(fit.conf_int(alpha=0.05))

0 1
Intercept -0.564307 0.329042
x1 0.185371 1.469529
x2 0.621989 1.856559

The examples above illustrates how we can construct confidence intervals for
the parameters and test hypotheses without having to implement the actual
estimation ourselves.
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6.1.1 Confidence and prediction intervals for the line

Just as for the simple linear regression model we will often be interested in pre-
diction of future outcome of an experiment, and as usual we will be interested
in quantifying the uncertainty of such an experiment. The expected value of a
new experiment (with x1 = x1,new, . . . , xp = xp,new) is

ŷnew = β̂0 + β̂1x1,new + . . . + β̂pxp,new. (6-24)

In order to quantify the uncertainty of this estimate we need to calculate the
variance of ŷnew, in Section 5.3 we saw that this variance is a function of: 1) the
variance of the parameters, 2) the covariance between the parameters, and 3)
xnew. This is also true in the multiple linear regression case, except that xnew
is now a vector and we need to account for pairwise covariance between all
parameter estimators. This analysis is most elegantly done with matrix for-
mulation and is covered in Section 6.6. We can however do this using Python
without dealing with the covariances explicitly.

This is illustrated in the following example:

Example 6.8

With reference to Example 6.3 suppose we want to predict the expected value of
Y at (x1,new, x2,new) = (0.5, 0.5) and at (x1,new, x2,new) = (1, 1), we would also like
to know the standard error of the prediction and further the confidence and the
prediction intervals. The standard error of the prediction can be calculated by:

# # New data
new_data = pd.DataFrame({'x1': [0.5, 1],'x2': [0.5, 1]})

# # Prediction and confidence interval
pred = fit.get_prediction(new_data).summary_frame(alpha=0.05)
print(round(pred,3))

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 0.916 0.085 0.737 1.095 0.098 1.734
1 1.949 0.214 1.497 2.401 1.032 2.867

The data-frame “new_data” is the points where we want to predict the outcome, the
object “pred” has the fitted values (mean) at the points in “new_data”, the standard
errors for the predictions (mean_se), the upper and lower limits of the confidence
intervals (mean_ci_upper and mean_ci_lower), and the upper and lower limits of
the prediction intervals (obs_ci_upper and obs_ci_lower).
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Notice that the standard error for ŷnew is much larger for the point (x1,new, x2,new) =

(1, 1) than for the point (x1,new, x2,new) = (0.5, 0.5), this is because the (1,1) point is
far from the average of the regressors, while the point (0.5,0.5) is close to the average
value of the regressors.

Now, we are actually able to calculate confidence and prediction intervals for the
two points, the confidence intervals become

CI1 = 0.9157± t1−α/2 · 0.08477, (6-25)

CI2 = 1.9491± t1−α/2 · 0.21426, (6-26)

and the prediction intervals become (add the variance of Ŷnew and σ̂2)

PI1 = 0.9157± t1−α/2 ·
√

0.084772 + 0.37842, (6-27)

PI2 = 1.9491± t1−α/2 ·
√

0.214262 + 0.37842, (6-28)

where t1−α/2 is obtained from a t-distribution with 17 degrees of freedom.

The calculations in Python is exemplified for the first prediction interval below

p_i = 0.9157 + np.array([-1,1]) * stats.t.ppf(0.975, df=17) * np.sqrt(0.08477**2 + 0.3784**2)
np.round(p_i, 3)

array([0.098, 1.734])

We saw in the example above that the standard error for the fit is large when
we are far from the center of mass for the regressors, this is illustrated in Figure
6.2.

Method 6.9 Intervals for the line (by Python)

The (1-α) confidence and prediction intervals for the line β̂0 + β̂1x1,new +
· · ·+ β̂pxp,new are calculated in Python by

# Confidence and Prediction interval
fit.get_prediction(new_data).summary_frame(alpha=alpha)
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ŷ

Figure 6.2: Standard error for ŷnew (blue surface) and standard error for ynew
(red surface).
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Remark 6.10

Explicit formulas for confidence and prediction intervals are given in Section
6.6.

6.2 Curvilinear regression

Suppose we are given pairs of values of x and y and there seems to be informa-
tion in x about y, but the relation is clearly non-linear

Yi = f (xi) + εi, εi ∼ N(0, σ2), (6-29)

and the non-linear function f (x) is unknown to us. The methods we have dis-
cussed don’t apply for non-linear functions, and even if we could do non-linear
regression we would not know which function to insert. We do however know
from elementary calculus that any function can be approximated by its Taylor
series expansion

f (x) ≈ f (0) + f ′(0) · x +
f ′′(0)

2
x2 + · · ·+ f (p)(0)

p!
xp, (6-30)

now replace the Taylor series coefficients
(

f (j)(0)
j!

)
by β j and insert (6-30) in

(6-29) to get

Yi = β0 + β1x + β2x2 + · · ·+ βpxp + εi

= β0 + β1x1 + β2x2 + · · ·+ βpxp + εi,
(6-31)

where xj = xj, we refer to this method as curvilinear regression. The method is
illustrated in the following example:

Example 6.11 Simulation of non-linear model

We simulate the following model

Yi = sin(πxi) + ε i, ε i ∼ N(0, 0.12), (6-32)

with x ∈ [0, 1] by:

np.random.seed(12657)
n = 200
x = np.random.uniform(size = n)
y = np.sin(np.pi * x) + np.random.normal(0, 0.1,size=n)
df_sim = pd.DataFrame({'y': y,'x1' : x, 'x2' : x**2})
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Yi is a non-linear function of x but lets try to estimate parameters in the simple linear
regression model

Yi = β0 + β1xi + ε i, ε i ∼ N(0, σ2), (6-33)

and find the 95% confidence interval for the parameters:

fit_sim = smf.ols(formula = 'y ~ x1', data = df_sim).fit()
print(round(fit_sim.conf_int(alpha=0.05),3))

0 1
Intercept 0.510 0.690
x1 -0.097 0.211

We see that the 95% confidence interval for β1 covers zero, and we can therefore
not reject the null hypothesis that β1 is zero. Now include a quadratic term in x1 to
approximate the non-linear function by the model

Yi = β0 + β1xi + β2x2
i + ε i, ε i ∼ N(0, σ2), (6-34)

fit_sim2 = smf.ols(formula = 'y ~ x1 + x2', data = df_sim).fit()
print(round(fit_sim2.conf_int(alpha=0.05),3))

0 1
Intercept -0.095 -0.006
x1 3.885 4.303
x2 -4.292 -3.883

Now we see that all parameters are significantly different from zero on a 5% confi-
dence level. The plot below shows the residuals for the two models as a function of
the fitted values:
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It is clear that including the second order term removed most, if not all, systematic
dependence in the residuals. Also looking at the fitted values together with the
actual values shows that we have a much better model when including the second
order term (red line):
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Remark 6.12

In general one should be careful when extrapolation models into areas
where there is no data, and this is in particular true when we use curvilinear
regression.
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6.3 Collinearity

In statistics collinearity refers to situations where the sample correlation be-
tween the independent variables is high. If this is the case we should be careful
with interpretation of parameter estimates, and often we should actually reduce
the model. Now consider the model

yi = β0 + β1x1 + β2x2 + εi, εi ∼ N(0, σ2), (6-35)

and assume that the sample correlation between x1 and x2 is exactly equal 1,
this implies that we can write x2 = a + bx1, inserting in (6-35) gives

yi = β0 + β1x1 + β2(a + bx1) + εi (6-36)
= β0 + β2a + (β1 + β2b)x1 + εi, (6-37)

which shows that we can only identify β0 + β2a and (β1 + β2b), so the model is
essentially a simple linear regression model. It could also have been the other
way around, i.e. x1 = a + bx2, and thus it seems that it is not possible to dis-
tinguish between x1 and x2. In real life application the correlation between the
regressors is rarely 1, but rather close to 1 and we need to handle this case as
well. In actual practice a simple way to handle this is, by adding or removing
one parameter at the time. Other procedures exist, e.g. using the average of the
regressors, or using principle component regression, we will not discuss these
approaches further here.

A small example illustrates the principle:

Example 6.13 Simulation

Consider the model

Yi = β0 + β1x1 + β2x2 + ε i, ε i ∼ N(0, σ2), (6-38)

with data generated from the following code:

np.random.seed(200)
n = 100
x1 = np.random.uniform(size = n)
x2 = x1 + np.random.normal(0, 0.01,size=n)
y = x1 + x2 + np.random.normal(0, 0.5,size=n)
df_sim = pd.DataFrame({'y': y,'x1' : x1, 'x2' : x2})

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.scatter(x1,y)
ax2.scatter(x2,y)
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Clearly, both x1 and x2 contain information about y, but our usual linear regression
gives:

fit_sim = smf.ols(formula = 'y ~ x1 + x2', data = df_sim).fit()
print(round(fit_sim.conf_int(alpha=0.05),3))

0 1
Intercept -0.197 0.247
x1 -14.847 10.061
x2 -8.057 16.898

we see that none of the parameters are significant (on a 5% level), but if we remove
x1 (this is the one with the highest p-value) from the model we get:
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fit_sim2 = smf.ols(formula = 'y ~ x2', data = df_sim).fit()
print(fit_sim2.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.567
Model: OLS Adj. R-squared: 0.562
No. Observations: 100 F-statistic: 128.2
Covariance Type: nonrobust Prob (F-statistic): 1.69e-19
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0283 0.111 0.255 0.799 -0.192 0.249
x2 2.0240 0.179 11.322 0.000 1.669 2.379
==============================================================================

and the slope is now highly significant.

The lesson learned from the example above is that we should always try to
reduce the model before concluding that individual parameters are zero. Model
development is a partly manual process, where the end result might depend on
the selection strategy. The usual strategies are: backward selection, where we start
by the most complicated model we can think of and remove one term at a time
(this is what we did in the example above), and forward selection where we start
by a simple model and include new terms one by one.

Remark 6.14 Interpretation of parameters

In general we can interpret the parameters of a multiple linear regression
model as the effect of the variable given the other variables. E.g. β j is the
effect of xj when we have accounted for other effects (xi, i 6= j). This inter-
pretation is however problematic when we have strong collinearity, because
the true effects are hidden by the correlation.

An additional comment on the interpretation of parameters in the example
above is: since the data is simulated, we know that the true parameters are
β1 = β2 = 1. In the full model we got β̂1 ≈-2.40 and β̂2 ≈ 4.42. Both of these
numbers are clearly completely off, the net effect is however β̂1 + β̂2 ≈2.02 (be-
cause x1 ≈ x2). In the reduced model we got β̂2 =2.02, which is of course also
wrong, but nearly the same level, and only holds because x1 ≈ x2.
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6.4 Residual analysis

Just as for the simple linear regression model we will need to justify that the
assumptions in the linear regression model holds. This is handled by q-q plots,
and considering the relation between the residuals and the fitted values. This
analysis is exactly the same as for the simple linear regression in Section 5.7.

We saw that plotting the residuals as a function of fitted values could reveal
systematic dependence, which imply there are un-modelled effects that should
be included in the model. The question is of course how we can identify such
effects. One way is to plot the residuals as a function of potential regressors,
which are not included. Plotting the residuals as a function of the included
regressors might reveal non-linear effects. Again we illustrate this method by
an example:

Example 6.15 Residuals analysis

Consider the model in the Python script below, the true model is

yi = x1 + 2x2
2 + ε i, ε i ∼ N(0, 0.1252) (6-39)

in a real application the true model is of course hidden to us and we would start by
a multiple linear model with the two effects x1 and x2. Looking at the plots below
also suggests that this might be a good model:

np.random.seed(200)
n = 100
x1 = np.random.uniform(size = n)
x2 = np.random.uniform(size = n)
y = x1 + 2*x2**2 + + np.random.normal(0, 0.125,size=n)
df_sim = pd.DataFrame({'y': y,'x1' : x1, 'x2' : x2})

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.scatter(x1,y)
ax2.scatter(x2,y)
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Now we fit the model

yi = β0 + β1x1 + β2x2 + ε i, ε i ∼ N(0, σ2), (6-40)

and plot the resulting residuals as a function of the fitted values, and the indepen-
dent variables (x1 and x2). There seems to be a systematic dependence between the
fitted values and the residuals (left plot):

fit_sim = smf.ols(formula = 'y ~ x1 + x2', data = df_sim).fit()

res = y - fit_sim.fittedvalues
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8,4))

ax1.scatter(fit_sim.fittedvalues,res)
ax2.scatter(x1,res)
ax3.scatter(x2,res)
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The left plot does however not suggest where the dependence comes from. Now
looking at the residuals as a function of x1 and x2 (centre and left plot) reveal that
the residuals seem to be quadratic in x2, and we should therefore include x2

2 in the
model:

x3 = x2**2
df_sim = pd.DataFrame({'y': y,'x1' : x1, 'x2' : x2,'x3': x3})
fit_sim = smf.ols(formula = 'y ~ x1 + x2 +x3', data = df_sim).fit()

res = y - fit_sim.fittedvalues

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8,4))
ax1.scatter(fit_sim.fittedvalues,res)
ax2.scatter(x1,res)
ax3.scatter(x2,res)
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We now see that there is no systematic dependence in the residuals and we can
report the final result.
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print(fit_sim.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.971
Model: OLS Adj. R-squared: 0.970
No. Observations: 100 F-statistic: 1057.
Covariance Type: nonrobust Prob (F-statistic): 2.33e-73
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -0.0100 0.044 -0.230 0.819 -0.097 0.077
x1 1.0166 0.044 23.150 0.000 0.929 1.104
x2 0.1342 0.173 0.774 0.441 -0.210 0.478
x3 1.8668 0.169 11.056 0.000 1.532 2.202
==============================================================================

Now we can actually see that we find parameter values close to the true ones, further
the slope related to x2 and the intercept is not significant, however usually when x2

2
have a significant parameter we would also keep x2 in the model, the same comment
apply to the intercept, that we would usually always include in the model.



Chapter 6 6.5 LINEAR REGRESSION IN PYTHON 271

6.5 Linear regression in Python

Method 6.16 below gives a practical summary of Chapter 5 and 6 with refer-
ences to the applied R-functions.

Method 6.16

This method box is a very short guide to Python and linear regression.

Data Physical/mechanistic understanding

1: (Re)formulate linear or curve-linear model:
Yk = x1,k + ... + xp,k + εk ; εk ∼ N(0, σ2)

2: Estimate parameters with:
> fit <- smf.ols(y ˜ x1 + · · · + xp, data = df).fit

3: Residual analysis using e.g.:
> sm.qqplot(fit.resid.values) # Normal assumption
> scatter(fit.fittedvalues, fit.resid.values) # Checking for structures
> scatter(x1,fit.resid.values # Identify structures

4: Analyse model using:
> fit.summary(slim=TRUE) # (p-values)
> confint(model) # (confidence interval for parameters)
Collinearity present? Simplify (using e.g. backward selection)

5: Calculate confidence and prediction interval using:
> fit.get.prediction(new_data).summary_frame(alpha=alpha)
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6.6 Matrix formulation

The multiple linear regression problem can be formulated in vector-matrix no-
tation as

Y = Xβ + ε, ε ∼ N(0, σ2I), (6-41)

or



Y1
...

Yn


 =




1 x1,1 · · · xp,1
...

...
...

1 x1,n · · · xp,n







β0
...

βp


+




ε1
...

εn


 , εi ∼ N(0, σ2). (6-42)

Notice, that the formulation in (6-41) is exactly the same as we saw in Section
5.5.

The residual sum of squares are calculated by

RSS = εTε = (y− Xβ)T(y− Xβ), (6-43)

and the parameter estimates are given by:

Theorem 6.17

The estimators of the parameters in the simple linear regression model are
given by

β̂ = (XTX)−1XTY , (6-44)

and the covariance matrix of the estimates is

V[β̂] = σ2(XTX)−1, (6-45)

and central estimate for the residual variance is

σ̂2 =
RSS

n− (p + 1)
. (6-46)

The proof of this theorem follows the exact same arguments as the matrix for-
mulation of the simple linear regression model in Chapter 5 and hence it is
omitted here.

Marginal tests (H0 : βi = βi,0) can also in the multiple linear regression case be
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constructed by

β̂i − βi,0√
(Σ̂β)ii

∼ t(n− (p + 1)). (6-47)

6.6.1 Confidence and prediction intervals for the line

Now suppose that we want to make a prediction at a new point

xnew = [1, x1,new, . . . , xp,new],

in order to construct confidence and prediction intervals we calculate the vari-
ance of Ŷnew

V(Ŷnew) = V(xnewβ̂)

= xnew V(β̂)xT
new

= σ2xnew(XTX)−1xT
new,

(6-48)

in practice we will of course replace σ2 with its estimate (σ̂2), and hence use
quantile of the appropriate t-distribution (and standard errors rather than vari-
ances) to calculate confidence intervals. The variance of a single prediction is
calculated by

V(Ynew) = V(xnewβ̂ + εnew)

= xnew V(β̂)xT
new + σ2

= σ2(1 + xnew(XTX)−1xT
new).

(6-49)

The calculations above illustrate that the derivations of variances are relatively
simple, when we formulate our model in the matrix-vector notation.

import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.stats.proportion as smprop
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Chapter 7

Inference for Proportions

7.1 Categorical data

Until now we have mainly focused on continuous outcomes such as the height
of students. In many applications the outcome that we wish to study is cate-
gorical (7.1). For example, one could want to study the proportion of defective
components in a sample, hence the outcome has two categories: “defect” and
“non-defect”. Another example could be a study of the caffeine consumption
among different groups of university students, where the consumption could
be measured via a questionnaire in levels: none, 1-3 cups per day, more than 3
cups per day. Hence the categorical variable describing the outcome has three
categories.

In both examples the key is to describe the proportion of outcomes in each cate-
gory.

Remark 7.1

A variable is categorical if each outcome belongs to a category, which is one
of a set of categories.

7.2 Estimation of single proportions

We want to be able to find estimates of the population category proportions (i.e.
the “true” proportions). We sometimes refer to such a proportion as the proba-
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bility of belonging to the category. This is simply because the probability that a
randomly sampled observation from the population belongs to the category, is
the proportion of the category in the population.

Example 7.2

In a survey in the US in 2000, 1154 people answered the question whether they
would be willing to pay more for petrol to help the environment. Of the 1154 par-
ticipants 518 answered that they would be willing to do so.

Our best estimate of the proportion of people willing to pay more (p) is the observed
proportion of positive answers

p̂ =
"Number of positive answers"
"Total number of participants"

=
518
1154

= 0.4489.

This means that our best estimate of the proportion of people willing to pay more
for petrol to help the environment is 44.89%.

In the above example we can think of n = 1154 trials, where we each time have
a binary outcome (yes or no), occurring with the unknown probability p. The
random variable X counts the number of times we get a yes to the question,
hence X follows a binomial distribution B(n, p) with the probability of observ-
ing x successes given by

P(X = x) =
(

n
x

)
px(1− p)n−x. (7-1)

As mentioned in Example 7.2, our best estimate of the unknown p is the pro-
portion

p̂ =
x
n

, p̂ ∈ [0, 1]. (7-2)

From Chapter 2 we know that if X ∼ B(n, p), then

E(X) = np, (7-3)
V(X) = np(1− p). (7-4)

This means that

E( p̂) = E
(

X
n

)
=

np
n

= p, (7-5)

V( p̂) = V
(

X
n

)
=

1
n2 V(X) =

p(1− p)
n

. (7-6)
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From Equation (7-5) we see that p̂ is an unbiased estimator of the unknown p
and from Equation (7-6) that the standard error (the (sampling) standard devi-

ation) of p̂ is σp̂ =
√

p(1−p)
n . It is important to quantify the uncertainty of the

calculated estimate using confidence intervals. For large samples, the Central
Limit Theorem gives us that the sample proportion p̂ is well approximated by
a normal distribution, and thus a (1− α)100% confidence interval for the pop-
ulation proportion p is

p̂± z1−α/2 σp̂. (7-7)

However, σp̂ depends on the unknown p, which we do not know. In practice
we will have to estimate the standard error by substituting the unknown p by
the estimate p̂.

Method 7.3 Proportion estimate and confidence interval

The best estimate of the probability p of belonging to a category (the popu-
lation proportion) is the sample proportion

p̂ =
x
n

, (7-8)

where x is the number of observations in the category and n is the total
number of observations.

A large sample (1− α)100% confidence interval for p is given as

p̂± z1−α/2

√
p̂(1− p̂)

n
. (7-9)

Remark 7.4

As a rule of thumb the normal distribution is a good approximation of the
binomial distribution if np and n(1− p) are both greater than 15.

Example 7.5

In the figure below we have some examples of binomial distributions. When we
reach a size where np ≥ 15 and n(1 − p) ≥ 15 it seems reasonable that the bell-
shaped normal distribution will be a good approximation.
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Example 7.6

If we return to the survey in Example 7.2, we can now calculate the 95% confidence
interval for the probability (i.e. the proportion willing to pay more for petrol to help
the environment).

We found the estimate of p by the observed proportion to p̂ = 518
1154 = 0.45. The

standard error of the proportion estimate is

σ̂p̂ =
√

p̂(1− p̂)/n =
√

0.45 · 0.55/1154 = 0.0146.

Since we have np̂ = 1154 · 0.45 = 519.3 and n(1− p̂) = 1154 · 0.55 = 634.7, both
greater than 15, we can use the expression from Method 7.3 to get the 95% confidence
interval

p̂± 1.96 · σ̂p̂ = 0.45± 1.96 · 0.0146 = [0.42, 0.48].

From this we can now conclude that our best estimate of the proportion willing to
pay more for petrol to protect the environment is 0.45, and that the true proportion
with 95% certainty is between 0.42 and 0.48. We see that 0.5 is not included in the
confidence interval, hence we can conclude that the proportion willing to pay more
for petrol is less than 0.5 (using the usual α = 0.05 significance level). We will cover
hypothesis testing for proportions more formally below.
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Remark 7.7 What about small samples then?

There exist several ways of expressing a valid confidence interval for p in
small sample cases, that is, when either np ≤ 15 or n(1− p) ≤ 15. We men-
tion three of these here - only for the last one we give the explicit formula:

Continuity correction

The so-called continuity correction is a general approach to making the
best approximation of discrete probabilities (in this case the binomial
probabilities) using a continuous distribution, (in this case the normal
distribution). We do not give any details here.

Exact intervals

Probably the most well known of such small sample ways of ob-
taining a valid confidence interval for a proportion is the so-called
exact method based on actual binomial probabilities rather than a
normal approximation. It is not possible to give a simple formula
for these confidence limits, and we will not explain the details here,
but simply note that they can be obtained by the Python function
stats.binomtest. These will be valid no matter the size of n and p.

“Plus 2”-approach

Finally, a simple approach to a good small sample confidence inter-
val for a proportion, will be to us the simple formula given above in
Method 7.3, but applied to x̃ = x + 2 and ñ = n + 4.

Remark 7.8 Confidence intervals for single proportions in Python

In Python we can either use the function smprop.proportions_ztest or
stats.binomtest to find the confidence interval of a single proportion (and
some hypothesis testing information to be described below).

The stats.binomtest function uses the exact approach. The
smprop.proportions_ztest does not use continuity correction, but as-
sumes normality.
Therefore: none of these intervals calculated by Python coincides exactly
with the formula given in Method 7.3, neither applied to x and n nor ap-
plied to x̃ = x + 2 and ñ = n + 4. And vice versa: the exact computational
details of the different intervals calculated by Python are not given in the text
here.



Chapter 7 7.2 ESTIMATION OF SINGLE PROPORTIONS 279

7.2.1 Testing hypotheses

Hypothesis testing for a single proportion (or probability) p is presented in this
section.

The first step is to formulate the null hypothesis and the alternative as well as
choosing the level of significance α. The null hypothesis for a proportion has
the form

H0 : p = p0 (7-10)

where p0 is a chosen value between 0 and 1. In Example 7.2, we could be in-
terested in testing whether half of the population, from which the sample was
taken, would be willing to pay more for petrol, hence p0 = 0.5.

The alternative hypothesis is the two-sided alternative

H1 : p 6= p0. (7-11)

Remark 7.9

As for the t-tests presented in Chapter 3, we can also have one-sided tests
for proportions, i.e. the “less than” alternative

H0 : p ≥ p0 (7-12)
H1 : p < p0, (7-13)

and the “greater than” alternative

H0 : p ≤ p0 (7-14)
H1 : p > p0, (7-15)

however these are not included further in the material, see the discussion in
Section 3.1.7 (from page 144 in the book), which applies similarly here.

The next step is to calculate a test statistic as a measure of how well our data fits
the null hypothesis. The test statistic measures how far our estimate p̂ is from
the value p0 relative to the uncertainty – under the scenario that H0 is true.
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So, under H0 the true proportion is p0 and the standard error is
√

p0(1− p0)/n,
thus to measure the distance between p̂ and p0 in standard deviations we cal-
culate the test statistic

zobs =
x− np0√

np0(1− p0)
. (7-16)

When H0 is true, the test statistic seen as a random variable is

Z =
p̂− p0√

p0(1− p0)/n
=

X− np0√
np0(1− p0)

, (7-17)

and follows approximately a standard normal distribution Z ∼ N(0, 1), when
n is large enough:

Theorem 7.10

In the large sample case the random variable Z follows approximately a
standard normal distribution

Z =
X− np0√

np0(1− p0)
∼ N(0, 1), (7-18)

when the null hypothesis is true. As a rule of thumb, the result will be valid
when both np0 > 15 and n(1− p0) > 15 .

We can use this to make the obvious explicit method for the hypothesis test:
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Method 7.11 One sample proportion hypothesis test

1. Compute the test statistic using Equation (7-16)

zobs =
x− np0√

np0(1− p0)

2. Compute evidence against the null hypothesis

H0 : p = p0, (7-19)

vs. the the alternative hypothesis

H1 : p 6= p0, (7-20)

by the

p-value = 2 · P(Z > |zobs|). (7-21)

where the standard normal distribution Z ∼ N(0, 12) is used

3. If the p-value < α we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±z1−α/2:
if |zobs| > z1−α/2 we reject H0, otherwise we accept H0

Example 7.12

To conclude Example 7.2 we want to test the null hypothesis

H0 : p = 0.5,

against the alternative

H1 : p 6= 0.5.

We have chosen α = 0.05, hence the critical value is the 0.975 quantile in the stan-
dard normal distribution z1−α/2 = 1.96. Thus we get the observed value of the test
statistic by

zobs =
518− 577√

1154 · 0.5 · (1− 0.5)
= −3.47.
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Since z = −3.47 < −1.96 then we reject H0. The p-value is calculated as the proba-
bility of observing zobs or more extreme under the null hypothesis

2 · P(Z ≥ 3.47) = 0.0005.

We can get this directly using Python:

# Testing the probability = 0.5 with a two-sided alternative
# We have observed 518 out of 1154
# Do it without continuity corrections
z_obs,p_value = smprop.proportions_ztest(518, 1154, value=0.5, prop_var=0.5)
print(z_obs)

-3.473594375515837

print(p_value)

0.0005135367279608199

Note that the results are exactly the same as when calculated by hand even though
the test statistic used is actually Z2 ∼ χ2 with one degree of freedom, since this is
the same as saying Z ∼ N(0, 1). This is explained in detail later in the chapter.

7.2.2 Sample size determination

Before conducting a study, it is important to consider the sample size needed to
achieve a wanted precision. In the case with a single probability to estimate, we
see that the error we make when using the estimator p̂ = x

n is given by
∣∣ x

n − p
∣∣.

Using the normal approximation (see Theorem 7.3) we can conclude that the
error will be bounded by

∣∣∣ x
n
− p

∣∣∣ < z1−α/2

√
p(1− p)

n
, (7-22)

with probability 1− α. Thus the Margin of Error (ME) of the estimate becomes

ME = z1−α/2

√
p(1− p)

n
. (7-23)

Similar to the method given for quantitative data in Method 3.63, we can use
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Equation (7-23) to determine the needed sample size in a single proportions
setup. Solving for n we get:

Method 7.13 Sample size formula for the CI of a proportion

Given some “guess” (scenario) of the size of the unknown p, and given some
requirement to the ME-value (required expected precision) the necessary
sample size is then

n = p(1− p)
(z1−α/2

ME

)2
. (7-24)

If p is unknown, a worst case scenario with p = 1/2 is applied and necessary
sample size is

n =
1
4

(z1−α/2

ME

)2
. (7-25)

The expression in Equation (7-25) for n when no information about p is available
is due to the fact that p(1− p) is largest for p = 1/2, so the required sample size
will be largest when p = 1/2.

Method 7.13 can be used to calculate the sample size for a given choice of ME.

7.3 Comparing proportions in two populations

For categorical variables we sometimes want to compare the proportions in two
populations (groups). Let p1 denote the proportion in group 1 and p2 the pro-
portion in group 2. We will compare the groups by looking at the difference in
proportions p1 − p2, which is estimated by p̂1 − p̂2.

Example 7.14

In a study in the US (1975) the relation between intake of contraceptive pills (birth
control pills) and the risk of blood clot in the heart was investigated. The following
data were collected from a participating hospital:

Contraceptive pill No pill
Blood clot 23 35
No blood clot 34 132
Total 57 167
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We have a binary outcome blood clot (yes or no) and two groups (pill or no pill). As
in Section 7.2 we find that the best estimates of the unknown probabilities are the
observed proportions

p̂1 =
"Number of blood clots in the pill group"

"Number of women in the pill group"
=

23
57

= 0.4035, (7-26)

p̂2 =
"Number of blood clots in the no pill group"

"Number of women in the no pill group"
=

35
167

= 0.2096. (7-27)

The difference in probabilities is estimated to be

p̂1 − p̂2 = 0.4035− 0.2096 = 0.1939. (7-28)

Thus the observed probability of getting a blood clot, was 0.1939 higher in the con-
traceptive pill group than in the no pill group.

We have the estimate p̂1 − p̂2 of the difference in probabilities p1 − p2 and the
uncertainty of this estimate can be calculated by:

Method 7.15

An estimate of the standard error of the estimator p̂1 − p̂2 is

σ̂p̂1− p̂2 =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
. (7-29)

The (1− α)100% confidence interval for the difference p1 − p2 is

( p̂1 − p̂2)± z1−α/2 · σ̂p̂1− p̂2 . (7-30)

This confidence interval requires independent random samples for the two
groups and large enough sample sizes n1 and n2. A rule of thumb is that
ni pi ≥ 10 and ni(1− pi) ≥ 10 for i = 1, 2, must be satisfied.
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Remark 7.16

The standard error in Method 7.15 can be calculated by

V( p̂1 − p̂2) = V( p̂1) + V( p̂2) = σ̂2
p̂1
+ σ̂2

p̂2
, (7-31)

σ̂p̂1− p̂2 =
√

V( p̂1 − p̂2) =
√

σ̂2
p̂1
+ σ̂2

p̂2
. (7-32)

Notice, that the standard errors are added (before the square root) such that
the standard error of the difference is larger than the standard error for the
observed proportions alone. Therefore in practice the estimate of the differ-
ence p̂1 − p̂2 will often be further from the true difference p1 − p2 than p̂1
will be from p1 or p̂2 will be from p2.

Example 7.17

Returning to Example 7.14 where we found the estimated difference in probability
to be

p̂1 − p̂2 = 0.4035− 0.2096 = 0.1939. (7-33)

The estimated standard error of the estimate is

σ̂p̂1− p̂2 =

√
0.4035(1− 0.4035)

57
+

0.2096(1− 0.2096)
167

= 0.0722. (7-34)

A 99% confidence interval for this difference is then

( p̂1 − p̂2)± z0.995 · σ̂p̂1− p̂2 = 0.1939± 2.5758 · 0.0722 = [0.0079, 0.3799]. (7-35)

Hence our best estimate of the difference is 0.19 and with very high confidence the
true difference is between 0.008 and 0.38.

We find that 0 is not included in the confidence interval, so 0 is not a plausible value
for the difference p1 − p2. The values in the confidence interval are all positive and
therefore we can conclude that (p1 − p2) > 0, that is p1 > p2, i.e. the probability of
blood clot is larger in the contraceptive pill group than in the no pill group.

We can also compare the two proportions p1 and p2 using a hypothesis test. As
in Method 7.11, there are four steps when we want to carry out the test. The
first step is to formulate the hypothesis and the alternative.

The null hypothesis is H0 : p1 = p2 and we will denote the common proportion
p, and choose a two-sided alternative H1 : p1 6= p2.
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In the second step we calculate a test statistic measuring how far p̂1 − p̂2 falls
from 0, which is the value of p1 − p2 under H0.

Under H0, we only have one proportion p (since p1 = p2 = p). The best estima-
tor for this common proportion is the overall observed proportion

p̂ =
x1 + x2

n1 + n2
. (7-36)

When the two sample sizes n1 and n2 are similar, this pooled estimate of the
overall proportion will be approximately half way between p̂1 and p̂2, but oth-
erwise the pooled estimate will be closest to the estimate from the largest sample
size.

Method 7.18 Two sample proportions hypothesis test

The two-sample hypothesis test for comparing two proportions is given by
the following procedure:

1. Compute, with p̂ = x1+x2
n1+n2

, the test statistic

zobs =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

) (7-37)

2. Compute evidence against the null hypothesis

H0 : p1 = p2, (7-38)

vs. the the alternative hypothesis

H1 : p1 6= p2, (7-39)

by the

p-value = 2 · P(Z > |zobs|). (7-40)

where the standard normal distribution Z ∼ N(0, 12) is used

3. If the p-value < α we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±z1−α/2:
if |zobs| > z1−α/2 we reject H0, otherwise we accept H0
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Example 7.19

In Example 7.17 we tested whether the probability of blood clot is the same for the
group taking the pills as for the group without pills using the CI. The null hypothesis
and alternative are

H0 : p1 = p2,

H1 : p1 6= p2.

This time we will test on a 1% significance level (α = 0.01).

The pooled estimate of the probability of blood clot under H0 is

p̂ =
23 + 35

57 + 167
= 0.259,

which is closest to the estimate from the largest group p̂2 = 0.210.

According to Method 7.15 the test statistic is

zobs =
p̂1 − p̂2√

p̂(1− p̂)( 1
n1

+ 1
n2
)
=

0.194√
0.259(1− 0.259)( 1

57 +
1

167 )
= 2.89.

The p-value is calculated by looking up zobs in a standard normal distribution (i.e.
N(0, 1))

2P(Z ≥ 2.89) = 0.0039 < 0.01.

As the p-value is less than 0.01 we can reject the null hypothesis of equal probabili-
ties in the two groups.

Instead of doing all the calculations in steps, we can use the function
smprop.proportions_ztest() to test the hypothesis.

# Testing that the probabilities for the two groups are equal
z_obs, p_val = smprop.proportions_ztest([23, 35], [57, 167], value=0, prop_var=0)
print(z_obs)

2.8859712586466184

print(p_val)

0.003902077897925702
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7.4 Comparing several proportions

In the previous Section 7.3, we were interested in comparing proportions from
two groups. In some cases we might be interested in proportions from two
or more groups, or in other words if several binomial distributions share the
same parameter p. The data can be setup in a 2× c table, where "Success" is the
response we are studying (e.g. a blood clot occurs) and "Failure" is when the
response does not occur (e.g. no blood clot).

Group 1 Group 2 ... Group c Total
Success x1 x2 ... xc x
Failure n1 − x1 n2 − x2 ... nc − xc n− x

Total n1 n2 ... nc n

We are then interested in testing the null hypothesis

H0 : p1 = p2 = . . . = pc = p (7-41)

against the alternative hypothesis: that the probabilities are not equal (or more
precisely: that that at least one of the probabilities is different from the others).

Under H0 the best estimator for the common p is the overall observed propor-
tion

p̂ =
x
n

. (7-42)

To test the null hypothesis, we need to measure how likely it is to obtain the
observed data (or more extreme) under the null hypothesis. So, under the sce-
nario that the null hypothesis is true, we can calculate the expected number of
successes in the jth group as

e1j = nj · p̂ = nj ·
x
n

, (7-43)

and the expected number of failures is

e2j = nj · (1− p̂) = nj ·
(n− x)

n
. (7-44)

Notice, that the expected number for a cell is calculated by multiplying the row
and column totals for the row and column, where the cell belongs and then
dividing by the grand total n.



Chapter 7 7.4 COMPARING SEVERAL PROPORTIONS 289

Method 7.20 The multi-sample proportions χ2-test

The hypothesis

H0 : p1 = p2 = . . . = pc = p, (7-45)

can be tested using the test statistic

χ2
obs =

2

∑
i=1

c

∑
j=1

(oij − eij)
2

eij
, (7-46)

where oij is the observed number in cell (i, j) and eij is the expected number
in cell (i, j).

The test statistic χ2
obs should be compared with the χ2-distribution with c− 1

degrees of freedom.

The χ2-distribution is approximately the sampling distribution of the statis-
tics under the null hypothesis. The rule of thumb is that it is valid when all
the computed expected values are at least 5: eij ≥ 5.

The test statistic in Method 7.20 measures the distance between the observed
number in a cell and what we would expect if the null hypothesis is true. If the
hypothesis is true then χ2 has a relatively small value, as most of the cell counts
will be close to the expected values. If H0 is false, some of the observed values
will be far from the expected resulting in a larger χ2.

Example 7.21

Returning to Example 7.19 we can consider a 2× 2 table as a case of a 2× c table.
We can organize our table with "Success" and "Failure" in the rows and groups as
the columns.

Contraceptive pill No pill Total
Blood clot 23 35 58
No blood clot 34 132 166
Total 57 167 224

Here x = 23 + 35 = 58 and n = 224

For each cell we can now calculate the expected number if H0 is true. For the pill
and blood clot cell we get

e1,1 =
58 · 57

224
= 14.76, (7-47)
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but we only observed 23 cases.

For the no pill and blood clot cell we get

e1,2 =
58 · 167

224
= 43.24, (7-48)

which is more than the observed 35 cases.

In the following table we have both the observed and expected values.

Birth control pill No birth control pill Total
Blood clot o11 = 23 o12 = 35 x = 58

e11 = 14.76 e12 = 43.24
No blood clot o21 = 34 o22 = 132 (n− x) = 166

e21 = 42.24 o22 = 123.8
Total n1 = 57 n2 = 167 n = 224

The observed χ2 test statistic can be calculated

χ2
obs =

(23− 14.76)2

14.76
+

(35− 43.24)2

43.24
+

(34− 42.24)2

42.24
+

(132− 123.8)2

123.8
= 8.33.

(7-49)

We then find the p-value, by calculating how likely it is to get 8.33 or more extreme if
the null hypothesis is true, using the χ2 distribution with c− 1 = 2− 1 = 1 degrees
of freedom

p-value = P(χ2 ≥ 8.33) = 0.0039, (7-50)

which is exactly the same as the result in Example 7.14. Do the same with the
stats.chi2_contingency() function in Python:



Chapter 7 7.4 COMPARING SEVERAL PROPORTIONS 291

# Reading the data into Python
pill_study = np.array([[23, 35], [34, 132]])
# Using Pandas
pill_study = pd.DataFrame(pill_study, index=['Blood Clot', 'No Clot'], columns=['Pill', 'No pill'])
print(pill_study)

Pill No pill
Blood Clot 23 35
No Clot 34 132

# Chi^2 test for testing that the distribution for the two groups are equal
chi2, p_val, dof, expected = stats.chi2_contingency(pill_study, correction=False)
# Test Statistic
print(chi2)

8.328830105734347

# P value
print(p_val)

0.0039020778979257016

# Degrees of freedom
print(dof)

1

# Expected frequencies under the null hypothesis
# Output will not be pandas DataFrame, but we can use pandas to display it nicely
print(pd.DataFrame(expected, index=['Blood Clot', 'No Clot'], columns=['Pill', 'No pill']))

Pill No pill
Blood Clot 14.758929 43.241071
No Clot 42.241071 123.758929
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In Section 7.3 we presented a z-test for the hypothesis H0 : p1 = p2, where

zobs =
p̂1 − p̂2√

p̂(1− p̂)( 1
n1

+ 1
n2
)

,

and in this section we have just seen a χ2 test that can also be used for 2× 2
tables. Using some algebra it turns out that the two tests are equivalent

χ2
obs = z2

obs, (7-51)

and they give exactly the same p-value for testing H0 : p1 = p2 against H1 :
p1 6= p2.

7.5 Analysis of Contingency Tables

Until now we have been looking at 2× c tables, but we can also have a more
general setup with r × c tables that arise when two categorical variables are
cross-tabulated. Such tables usually arise from two kinds of studies. First, we
could have samples from several groups (as in Section 7.4), but allowing for
more than two outcome categories. An example of this could be an opinion poll,
where three samples were taken at different time points by asking randomly
selected people whether they supported either: Candidate 1, Candidate 2 or
were undecided. Here we want to compare the distribution of votes for the
three groups (i.e. over time).

The other setup giving rise to an r× c table is when we have samples with two
paired categorical variables with same categories (i.e. both variables are mea-
sured on each observational unit). This might happen if we had a sample of
students and categorized them equivalently according to their results in En-
glish and mathematics (e.g. good, medium, poor). These tables are also called
contingency tables.

The main difference between the two setups is: in the first setup the column
totals are the size of each sample (i.e. fixed to the sample sizes), whereas in the
second setup the column totals are not fixed (i.e. they count outcomes and the
grand total is fixed to the sample size). However, it turns out that both setups
are analysed in the same way.
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7.5.1 Comparing several groups

In the situation comparing several groups, the hypothesis is that the distribu-
tion is the same in each group

H0 : pi1 = pi2 = . . . = pic = pi, for all rows i = 1, 2, . . . , r. (7-52)

So the hypothesis is that the probability of obtaining an outcome in a row cate-
gory does not depend on the given column.

As in Section 7.4 we need to calculate the expected number in each cell under
H0

eij = "jth column total" · "ith row total"
"grand total"

= nj ·
xi

n
. (7-53)

Method 7.22 The r× c frequency table χ2-test

For an r× c table the hypothesis

H0 : pi1 = pi2 = . . . = pic = pi, for all rows i = 1, 2, . . . , r, (7-54)

is tested using the test statistic

χ2
obs =

r

∑
i=1

c

∑
j=1

(oij − eij)
2

eij
. (7-55)

where oij is the observed number in cell (i, j) and eij is the expected number
in cell (i, j). This test statistic should be compared with the χ2-distribution
with (r− 1)(c− 1) degrees of freedom and the hypothesis is rejected at sig-
nificance level α if

χ2
obs > χ2

1−α

(
(r− 1)(c− 1)

)
. (7-56)

From Method 7.22, we see that we use the same test statistic as for 2× c tables
measuring the distance between the observed and expected cell counts. The
degrees of freedom (r− 1)(c− 1) occurs because only (r− 1)(c− 1) of the ex-
pected values eij need to be calculated – the rest can be found by subtraction
from the relevant row or column totals.
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Example 7.23

An opinion poll has been made at three time points (4 weeks, 2 weeks and 1 week
before the election) each time 200 participants was asked who they would vote for:
Candidate 1, Candidate 2 or were undecided. The following data was obtained:

4 weeks before 2 weeks before 1 week before Row total
Candidate 1 79 91 93 263
Candidate 2 84 66 60 210
Undecided 37 43 47 127
Column total 200 200 200 600

Note, that in this poll example the sample sizes are equal (i.e. n1 = n2 = n3 = 200),
however that is not a requirement.

We want to test the hypothesis that the votes are equally distributed in each of the
three polls

H0 : pi1 = pi2 = pi3, for all rows i = 1, 2, 3. (7-57)

The expected number of votes under H0 is calculated for the "Candidate 2" - "2 weeks
before" cell of the table

e22 = "2’nd column total" · "2’nd row total"
"grand total"

=
210 · 200

600
= 70. (7-58)

Continuing in the same way we can calculate all the expected cell counts:

4 weeks before 2 weeks before 1 week before
Candidate 1 o11 = 79 o12 = 91 o13 = 93

e11 = 87.67 e12 = 87.67 e13 = 87.67
Candidate 2 o21 = 84 o22 = 66 o23 = 60

e21 = 70.00 e22 = 70.00 e23 = 70.00
Undecided o31 = 37 o32 = 43 o33 = 47

e31 = 42.33 e32 = 42.33 e33 = 42.33

Looking at this table, it seems that 4 weeks before, Candidate 1 has less votes than
expected while Candidate 2 has more, but we need to test whether these differences
are statistically significant.

We can test the hypothesis in Equation (7-52) using a χ2 test with (3− 1)(3− 1) = 4
degrees of freedom.
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However, first we will calculate the observed column percentages and plot them:

Cand1 Cand2 Undecided

Distribution of Votes

Candidate
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1 week

From the bar plot it could seem that the support for Candidate 2 decreases as the
election approaches, but we need to test whether this is significant. In the following
Python code the hypothesis, stating that the distribution at each time point is the
same, is tested:
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# Reading the data into Python
poll = np.array([[79, 91, 93], [84, 66, 60], [37, 43, 47]])
poll = pd.DataFrame(poll, index=['Cand1', 'Cand2', 'Undecided'],

columns=['4 weeks', '2 weeks', '1 week'])

# testing same distribution in the three populations
chi2, p_val, dof, expected = stats.chi2_contingency(poll, correction=False)
# Test statistic
print(chi2)

6.961978041718169

# p-value
print(p_val)

0.1379112060673381

# Degrees of Freedom
print(dof)

4

# Expected frequencies under the null hypothesis
print(pd.DataFrame(expected, index=['Cand1', 'Cand2', 'Undecided'],

columns=['4 weeks', '2 weeks', '1 week']))

4 weeks 2 weeks 1 week
Cand1 87.666667 87.666667 87.666667
Cand2 70.000000 70.000000 70.000000
Undecided 42.333333 42.333333 42.333333

From the χ2 test we get an observed test statistic of 6.96, and we must now calculate
how likely it is to obtain this value or more extreme from a χ2-distribution with 4
degrees of freedom. It leads to a p-value of 0.14, so we accept the null hypothesis
and find that there is no evidence showing a change in distribution among the three
polls.
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7.5.2 Independence between the two categorical variables

When the only fixed value is the grand total, then the hypothesis we are inter-
ested in concerns independence between the two categorical variables

H0 : "The two variables are independent",
H1 : "The two variables are not independent (they are associated)".

(7-59)

Using the cell proportions pij the null hypothesis can be written as:

Theorem 7.24

To test if two categorical variables are independent the null hypothesis

H0 : pij = pi.p.j for all i, j, (7-60)

where pi. = ∑c
j=1 pij is the proportion of row i and p.j = ∑r

i=1 pij is the
proportion of column j, is tested.

The p-value for the observed result under this null hypothesis is calculated
using the χ2 test statistic from Method 7.22.

Example 7.25

A group of 400 students have had an English test and a mathematics test. The results
of each test a categorized as either bad, average or good.

English Mathematics
Bad Average Good Row total

Bad 23 60 29 112
Average 28 79 60 167
Good 9 49 63 121
Column total 60 188 152 400

We want to test the hypothesis of independence between results in English and
mathematics. First we read the data into Python and calculate proportions and totals:

# Reading the data into Python
results = np.array([[23, 60, 29], [28, 79, 60], [9, 49, 63]])
results_df = pd.DataFrame(results, index=['EngBad', 'EngAve', 'EngGood'],

columns=['MathBad', 'MathAve', 'MathGood'])
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# Percentages
prop = results_df/results_df.sum().sum()
print(prop)

MathBad MathAve MathGood
EngBad 0.0575 0.1500 0.0725
EngAve 0.0700 0.1975 0.1500
EngGood 0.0225 0.1225 0.1575

# Row totals
print(results_df.sum(axis=1))

EngBad 112
EngAve 167
EngGood 121
dtype: int64

# Column totals
print(results_df.sum(axis=0))

MathBad 60
MathAve 188
MathGood 152
dtype: int64

We want to calculate the expected cell count if H0 is true. Consider the events "good
English result" and "good mathematics result" corresponding to cell (3, 3). Under
the hypothesis of independence, we have

p33 = P("Good English and Good Maths") = P("Good English") · P("Good Maths")
(7-61)

From the calculated row and column totals, we would estimate

p̂33 =

(
121
400

)
·
(

152
400

)
, (7-62)

and out of 400 students we would expect

e33 = 400 · p̂33 = 400 ·
(

121
400

)
·
(

152
400

)
= 121 · 152

400
= 45.98. (7-63)

The method of calculating the expected cell counts is exactly as before. For the
“Good English and Good Mathematics” cell the expected value is less than the ob-
served 63. Continuing in this way, we can calculate all the expected cell counts:
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English Mathematics
Bad Average Good

Bad o11 = 23 o12 = 60 o13 = 29
e11 = 16.80 e12 = 52.64 e13 = 42.56

Average o21 = 28 o22 = 79 o23 = 60
e21 = 25.05 e22 = 78.49 e23 = 63.46

Good o31 = 9 o32 = 49 o33 = 63
e31 = 18.15 e32 = 56.87 e33 = 45.98

We can see that we have more students than expected in the Good - Good cell and
less than expected in the two Bad - Good cells. We can now test the hypothesis of
independence between English and mathematics results:

# Testing independence between english and maths results
chi2, p, dof, expected = stats.chi2_contingency(results, correction=False)
# Test statistic
print(chi2)

20.178903582087926

# p-value
print(p)

0.00046038041384262443

# Degrees of Freedom
print(dof)

4

# Expected frequencies under the null hypothesis
print(pd.DataFrame(expected, index=['EngBad', 'EngAve', 'EngGood'],

columns=['MathBad', 'MathAve', 'MathGood']))

MathBad MathAve MathGood
EngBad 16.80 52.64 42.56
EngAve 25.05 78.49 63.46
EngGood 18.15 56.87 45.98
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The χ2-test gives a test statistic of 20.18, which under H0 follows a χ2-distribution
with 4 degrees of freedom leading to a p-value of 0.0005. This means that the hy-
pothesis of independence between English and mathematics results is rejected.

Even though the hypothesis were formulated differently in the first setup when
comparing several groups, compared to the second setup with the hypothesis on
independence of two categorical variables, it turns out that the first hypothesis (7-52)
is also about independence. Two events are independent if

P(A and B) = P(A) · P(B), (7-64)

which expresses: the probability of both event A and event B occurring is equal
to the probability of event A occurring times the probability of event B occuring.

Another way of defining independence of two variables is through condition-
ing. Two events are independent if

P(A|B) = P(A), (7-65)

which states: the probability of event A does not change if we have informa-
tion about B. In the first Example 7.23 the probability of voting for Candidate
1 is the same irrespective of week and therefore the distribution in one week is
independent of the results from the other weeks.
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Chapter 8

Comparing means of multiple groups
- ANOVA

8.1 Introduction

In Chapter 3 the test of difference in mean of two groups was introduced

H0 : µ1 − µ2 = δ0. (8-1)

Often we are interested in testing if the mean of the two groups are different
(H0 : µ1 = µ2), against the alternative (µ1 6= µ2). Often we will face a situ-
ation where we have data in multiple (more than two) groups leading to the
natural extension of the two-sample situation to a multi-sample situation. The
hypothesis of k groups having the same means can then be expressed as

H0 : µ1 = µ2 = · · · = µk. (8-2)

Or in words we have k groups (often referred to as treatments) and we want to
test if they all have the same mean against the alternative that at least one group
is different from the other groups. Note, that the hypothesis is not expressing
any particular values for the means, but just that they are all the same.

The purpose of the data analysis in such a multi-group situation can be ex-
pressed as a two-fold purpose:

1. Answer the question: are the group means (significantly) different (hy-
pothesis test)?

2. Tell the story about (or “quantify”) the groups and their potential differ-
ences (estimates and confidence intervals)
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The statistical analysis used for such an analysis is called one-way Analysis
of Variance (ANOVA). Though there is an initial contradiction in the name, as
ANOVA is used to compare the means of populations and not their variances,
the name should not be met with confusion. An ANOVA expresses how dif-
ferent the means of k populations are by measuring how much of the variance
in data is explained by grouping the observations (in other words: the variance
explained by fitting a model with a mean for each population). If enough of the
variation is explained, then a significant difference in population means can be
concluded.

The one-way ANOVA is the natural multi-sample extension of the indepen-
dent two-sample setup covered in Chapter 3. We will also present a natural
multi-sample extension of the two paired-sample situation from Chapter 3. This
generalization, where the k samples are somehow dependent, e.g. if the same
individuals are used in each of the groups, is called two-way ANOVA.

8.2 One-way ANOVA

8.2.1 Data structure and model

As mentioned above we assume that we have data from k groups, also assume
ni repetitions in group (i), this imply that we can order data in a table like:

Tr1 y11 . . . y1,n1
...

... . . .
Trk yk,1 . . . yk,nk

The total number of observations is n = ∑k
i=1 ni, note that there does not have

to be the same number of observations within each group (treatment).

As for the two-sample case in Chapter 3 there are some standard assumptions
that are usually made in order for the methods to come to be 100% valid. In
the case of one-way ANOVA, these assumptions are expressed by formulating
a “model” much like how regression models in Chapters 5 and 6 are expressed

Yij = µi + εij, εij ∼ N(0, σ2). (8-3)

The model is expressing that the observations come from a normal distribution
within each group, that each group (i) has a specific mean, and that the variance
is the same (σ2) for all groups. Further, we see explicitly that we have a number
of observations (ni) within each group (j = 1, . . . , ni).
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Treatment
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µ̂1
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µ̂2

µ̂3
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α̂2

α̂3
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Figure 8.1: Conceptual plot for the ANOVA problem.

As noted above the relevant hypothesis to fulfil the first purpose of the analysis
is that of equal group means (8-2). It turns out that a slight modification of (8-3)
is convenient

Yij = µ + αi + εij, εij ∼ N(0, σ2). (8-4)

Now, the situation is described with a µ that corresponds to the overall mean
(across all groups), and then αi = µi − µ is the difference between each group
mean and the overall mean. The individual group mean is then µi = µ + αi,
and the null hypothesis is expressed as

H0 : α1 = · · · = αk = 0, (8-5)

with the alternative H1 : αi 6= 0 for at least one i. The concept is illustrated in
Figure 8.1 (for k = 3), the black dots are the measurements yij, the red line is the
overall average, red dots are the average within each group, and the blue lines
are the difference between group average and the overall average (α̂i).

Let’s have a look at an example, before we discuss the analysis in further details.
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Example 8.1 Basic example

The data used for Figure 8.1 is given by:

Group A Group B Group C
2.8 5.5 5.8
3.6 6.3 8.3
3.4 6.1 6.9
2.3 5.7 6.1

The question is of course: is there a difference in the means of the groups (A, B and
C)? We start by having a look at the observations:

y = np.array([2.8, 3.6, 3.4, 2.3,
5.5, 6.3, 6.1, 5.7,
5.8, 8.3, 6.9, 6.1])

treatm = pd.Categorical([1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3])

D = pd.DataFrame({'y': y, 'treatm': treatm})

D.boxplot(by='treatm', grid=False)
plt.title('Boxplots by categories')
plt.suptitle('') # Removing automatic titles
plt.xlabel('')
plt.show()

1 2 3
2

3

4

5

6

7

8

Boxplots by categories

By using pd.Categorical the treatments are not considered as numerical values by
Python, but rather as factors (or grouping variables), and we can get the boxplot of
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the within group variation. This plot gives information about the location of data
and variance homogeneity (the model assumption), of course with only 4 observa-
tions in each group it is difficult to asses this assumption.

Now we can calculate the parameter estimates (µ̂ and α̂i) by:

mu = np.mean(y)
muis = D.groupby('treatm',observed=True)['y'].mean()
alpha = muis - mu
print(mu)

5.233333333333333

print(muis)

treatm
1 3.025
2 5.900
3 6.775
Name: y, dtype: float64

print(alpha)

treatm
1 -2.208333
2 0.666667
3 1.541667
Name: y, dtype: float64

So our estimate of the overall mean is µ̂ = 5.23, and the group levels (offsets from
the overall sample mean) are α̂1 = −2.21, α̂2 = 0.67 and α̂3 = 1.54. The question we
need to answer is: how likely is it that the observed differences in group means are
random variation? If this is very unlikely, then it can be concluded that at least one
of them is significantly different from zero.

The shown use of the pandas function groupby function is a convenient way of find-
ing the mean of y for each level of the factor treatm. By the way if the mean is substi-
tuted by any other function, e.g. the variance, we could similarly find the sample
variance within each group (we will have a closer look at these later):
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D.groupby('treatm',observed=True)['y'].var()

treatm
1 0.349167
2 0.133333
3 1.249167
Name: y, dtype: float64

8.2.2 Decomposition of variability, the ANOVA table

A characteristic of ANOVA in general and one-way ANOVA specifically is the
fact that the overall variability (measured by the total variation) decomposes
into interpretable components – it is these components which are used for hy-
pothesis testing and more. For the one-way ANOVA presented in this section
the total variation, that is, the variation calculated across all the data completely
ignoring the fact that the data falls in different groups, can be decomposed into
two components: a component expressing the group differences and a compo-
nent expressing the (average) variation within the groups:

Theorem 8.2 Variability decomposition

The total sum of squares (SST) can be decomposed into sum of squared
errors (SSE) and treatment sum of squares (SS(Tr))

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2

︸ ︷︷ ︸
SSE

+
k

∑
i=1

ni(ȳi − ȳ)2

︸ ︷︷ ︸
SS(Tr)

, (8-6)

where

ȳ =
1
n

k

∑
j=1

ni

∑
j=1

yij, ȳi =
1
ni

ni

∑
j=1

yij. (8-7)

Expressed in short form

SST = SS(Tr) + SSE. (8-8)
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Before we turn to the proof of the theorem, we will briefly discuss some in-
terpretations and implications of this. First we look at each of the three terms
separately.

The SST expresses the total variation. Let us compare with Equation (1-6) the
formula for sample variance

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2. (8-9)

We can see that if the sample variance formula is applied to the the yijs joined
into a single sample (i.e. a single index counts through all the n observations),
then the sample variance is simply SST divided by n− 1. The sample variance
expresses then the average variation per observation. Therefore, we have

SST = (n− 1) · s2
y, (8-10)

where s2
y is the sample variance for all the yijs seen as a single sample (i.e. a

sample from single population).

The group mean differences are quantified by the SS(Tr) component, which
can basically be seen directly from the definition, where the overall mean is
subtracted from each group mean. As discussed above it can alternatively be
expressed by deviations α̂i

SS(Tr) =
k

∑
i=1

ni(ȳi − ȳ)2 =
k

∑
i=1

niα̂
2
i , (8-11)

so SS(Tr) is the sum of squared αi’s multiplied by the number of observations
in group ni.
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Remark 8.3

SS(Tr) is also the key expression to get the idea of why we call the whole
thing “analysis of variance”: if we, for a second, assume that we have the
same number of observations in each group: n1 = . . . = nk, and let us call
this common number m. Then we can express SS(Tr) directly in terms of the
variance of the k means

SS(Tr) = (k− 1) ·m · s2
means, (8-12)

where

s2
means =

1
k− 1

k

∑
i=1

(ȳi − ȳ)2. (8-13)

Let us emphasize that the formulas of this remark is not thought to be for-
mulas that we use for practical purposes, but they are expressed to show ex-
plicitly that “SS(Tr) quantifies the group differences by variation”. Another
way of thinking of SS(Tr) is that it quantifies the “the variance explained by
grouping the observations“, i.e. the variance explained by fitting a model
with a mean for each group.

Finally, SSE expresses the average variability within each group, as each in-
dividual observation yij is compared with the mean in the group to which it
belongs. In Figure 8.1 these are the differences between each of the black dots
with the relevant read dot. Again we can link the formula given above to basic
uses of the sample variance formula:
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Theorem 8.4 Within group variability

The sum of squared errors SSE divided by n − k, also called the residual
mean square MSE = SSE/(n − k) is the weighted average of the sample
variances from each group

MSE =
SSE

n− k
=

(n1 − 1)s2
1 + · · ·+ (nk − 1)s2

k
n− k

, (8-14)

where s2
i is the variance within the ith group

s2
i =

1
ni − 1

ni

∑
j=1

(yij − ȳi)
2. (8-15)

When k = 2, that is, we are in the two-sample case presented in Section 3.2,
the result here is a copy of the pooled variance expression in Method 3.52

For k = 2 : MSE = s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n− 2

. (8-16)

Intuitively, we would say that if some of the α̂i’s are large (in absolute terms),
then it is evidence against the null hypothesis of equal means. So a large SS(Tr)
value is evidence against the null hypothesis. It is also natural that “large”
should be relative to some variation. SSE is the within group variation, and it
also seems reasonable that if α̂i is large and the variation around µ̂i is small then
this is evidence against the null hypothesis. It does therefore seem natural to
compare SS(Tr) and SSE, and we will get back to the question of exactly how to
do this after the proof of Theorem 8.2:
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Proof

Add and subtract ȳi in SST to get

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2 =
k

∑
i=1

ni

∑
j=1

(yij − ȳi + ȳi − ȳ)2 (8-17)

=
k

∑
i=1

ni

∑
j=1

[
(yij − ȳi)

2 + (ȳi − ȳ)2 + 2(yij − ȳi)(ȳi − ȳ)
]

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2 +

k

∑
i=1

ni

∑
j=1

(ȳi − ȳ)2 + 2
k

∑
i=1

ni

∑
j=1

(yij − ȳi)(ȳi − ȳ)

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2 +

k

∑
i=1

ni(ȳi − ȳ)2 + 2
k

∑
i=1

(ȳi − ȳ)
ni

∑
j=1

(yij − ȳi),

now observe that ∑ni
j=1(yij − ȳi) = 0, and the proof is completed.

�

Example 8.5

We can now continue our example and calculate SST, SSE, and SS(Tr):

muis = muis.values # Coverting to numpy array
alpha = muis - mu
SST = np.sum((y - mu)**2)
SSE = (np.sum((y[treatm == 1] - muis[0])**2) +

np.sum((y[treatm == 2] - muis[1])**2) +
np.sum((y[treatm == 3] - muis[2])**2))

SSTr = 4 * np.sum(alpha**2)
print(np.round([SST, SSE, SSTr],3))

[35.987 5.195 30.792]

For these data we have that n1 = n2 = n3 = 4, so according to Theorem 8.2 we could
also find SSE from the average of the variances within each group:

vars = D.groupby('treatm',observed=True)['y'].var()
print((12 - 3) * np.mean(vars))

5.195000000000002



Chapter 8 8.2 ONE-WAY ANOVA 311

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pd
f

Figure 8.2: pdf of the F-distribution with 2 and 9 degrees of freedom (black line),
and with 4 and 9 degrees of freedom (red line).

Now we have established that we should compare SS(Tr) and SSE in some way,
it should of course be quantified exactly in which way they should be compared.
Now it turns out that the numbers SS(Tr)/(k − 1) and SSE/(n − k) are both
central estimators for σ2, when the null hypothesis is true, and we can state the
following theorem:

Theorem 8.6

Under the null hypothesis

H0 : αi = 0, i = 1, 2, . . . , k, (8-18)

the test statistic

F =
SS(Tr)/(k− 1)

SSE/(n− k)
, (8-19)

follows an F-distribution with k− 1 and n− k degrees of freedom.

The F-distribution is generated by the ratio between independent χ2 distributed
random variables, and the shape is shown in Figure 8.2 for two particular choices
of degrees of freedom.

As we have discussed before, the null hypothesis should be rejected if SS(Tr) is
large and SSE is small. This implies that we should reject the null hypothesis
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when the test statistic (F) is large in the sense of Theorem 8.6 (compare with
F1−α). The statistics are usually collected in an ANOVA table like this:

Source of Degrees of Sums of Mean sum of Test- p-
variation freedom squares squares statistic F value
Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 Fobs =
MS(Tr)

MSE P(F > Fobs)

Residual n− k SSE MSE = SSE
n−k

Total n− 1 SST

Example 8.7

We can now continue with our example and find the F-statistic and the p-value:

F = (SSTr / (3 - 1)) / (SSE / (12 - 3))
pv = 1 - stats.f.cdf(F, 3 - 1, 12 - 3)
print(F, pv)

26.67228103946101 0.0001650052218172826

So we have a test statistic F = 26.7 and a p-value equal to 0.000165 and we reject the
null hypothesis on e.g. level α = 0.05. The calculations can of course also be done
directly in Python, by:

fit = smf.ols('y ~ treatm', data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
treatm 2.0 30.791667 15.395833 26.672281 0.000165
Residual 9.0 5.195000 0.577222 NaN NaN

Note, that in the direct Python calculation it is very important to include treatm as a
factor (categorical), in order to get the correct analysis.

If we reject the null hypothesis, it implies that the observations can be finally
described by the initial model re-stated here

Yij = µ + αi + εij, εij ∼ N(0, σ2), (8-20)

and the estimate of the error variance σ2 is σ̂2 = SSE/(n− k) = MSE.
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Remark 8.8 When multiple groups = 2 groups

When k = 2, that is, we are in the two-sample case studied in Chapter 3, we
already saw above in Theorem 8.4 that MSE = s2

p. Actually, this means that
the analysis we get from a one-way ANOVA when we apply it for only k = 2
groups, which could be perfectly fine - nothing in the ANOVA approach
really relies on k having to be larger than 2 - corresponds to the pooled t-test
given as Method 3.53. More exact

for k = 2 : Fobs = t2
obs, (8-21)

where tobs is the pooled version coming from Methods 3.52 and 3.53. Thus
the p-value obtained from the k = 2 group ANOVA equals exactly the p-
value obtained from the pooled t-test given in Method 3.53.

8.2.3 Post hoc comparisons

If we reject the overall null hypothesis above, and hence conclude that αi 6= 0 for
at least one i it makes sense to ask which of the treatments are actually different.
That is, trying to meet the second of the two major purposes indicated in the
beginning. This can be done by pairwise comparison of the treatments. We
have already seen in Chapter 3, that such comparison could be based on the t-
distribution. We can construct confidence interval with similar formulas except
that we should use MSE = SSE/(n − k) as the estimate of the error variance
and hence also n− k degrees of freedom in the t-distribution:
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Method 8.9 Post hoc pairwise confidence intervals

A single pre-planned (1 − α) · 100% confidence interval for the difference
between treatment i and j is found as

ȳi − ȳj ± t1−α/2

√√√√MSE

(
1
ni

+
1
nj

)
, (8-22)

where t1−α/2 is based on the t-distribution with n− k degrees of freedom.

If all M = k(k − 1)/2 combinations of pairwise confidence intervals are
calculated using the formula M times, but each time with αBonferroni = α/M
(see Remark 8.14 below).

Similarly one could do pairwise hypothesis tests:

Method 8.10 Post hoc pairwise hypothesis tests

A single pre-planned level α hypothesis tests

H0 : µi = µj, H1 : µi 6= µj, (8-23)

is carried out by

tobs =
ȳi − ȳj√

MSE
(

1
ni
+ 1

nj

) , (8-24)

and

p-value = 2 · P(T > |tobs|), (8-25)

where the t-distribution with n− k degrees of freedom is used.

If all M = k(k− 1)/2 combinations of pairwise hypothesis tests are carried
out use the approach M times but each time with test level αBonferroni = α/M
(see Remark 8.14 below).
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Example 8.11

Returning to our small example we get the pairwise confidence intervals. If the
comparison of A and B was specifically planned before the experiment was carried
out, we would find the 95%-confidence interval as:

print(muis[0] - muis[1] + np.array([-1, 1]) *
stats.t.ppf(1 - 0.05 / 2, 12 - 3) * np.sqrt(SSE / (12 - 3) * (1/4 + 1/4)))

[-4.090 -1.660]

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:

tobs = (muis[0] - muis[1]) / np.sqrt(SSE / (12 - 3) * (1/4 + 1/4))
print(2 * (1 - stats.t.cdf(np.abs(tobs), 12 - 3)))

0.0004613963065729365

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =

0.016667:
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alpha_bonf = 0.05 / 3
# A-B
print(alpha[0] - alpha[1] + np.array([-1, 1]) *

stats.t.ppf(1-alpha_bonf/2, 12 - 3) * np.sqrt(SSE/(12 - 3) * (1/4 + 1/4)))

[-4.451 -1.299]

# A-C
print(alpha[0] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1-alpha_bonf/2, 12 - 3) * np.sqrt(SSE/(12 - 3) * (1/4 + 1/4)))

[-5.326 -2.174]

# B-C
print(alpha[1] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1-alpha_bonf/2, 12 - 3) * np.sqrt(SSE/(12 - 3) * (1/4 + 1/4)))

[-2.451 0.701]

and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that now.

The so-called Bonferroni correction done above, when we do all possible post
hoc comparisons, has the effect that it becomes more difficult (than without the
correction) to claim that two treatments have different means.

Example 8.12

The 0.05/3-critical value with 9 degrees of freedom is t0.9917 = 2.933 whereas the
0.05-critical value is t0.975 = 2.262:

print(stats.t.ppf(1 - alpha_bonf / 2, 12 - 3), stats.t.ppf(1 - 0.05 / 2, 12 - 3))

2.9333240883739897 2.2621571628540993

So two treatment means would be claimed different WITH the Bonferroni correction



Chapter 8 8.2 ONE-WAY ANOVA 317

if they differ by more than half the width of the confidence interval

2.933 ·
√

SSE/9 · (1/4 + 1/4) = 1.576 (8-26)

whereas without the Bonferroni correction should only differ by more than

2.262 ·
√

SSE/9 · (1/4 + 1/4) = 1.215 (8-27)

to be claimed significantly different.

Remark 8.13 Least Significant Difference (LSD) values

If there is the same number of observations in each treatment group m =
n1 = . . . = nk the LSD value for a particular significance level

LSDα = t1−α/2
√

2 ·MSE/m (8-28)

will have the same value for all the possible comparisons made.
The LSD value is particularly useful as a “measuring stick” with which we
can go and compare all the observed means directly: the observed means
with difference higher than the LSD are significantly different on the α-level.
When used for all of the comparisons, as suggested, one should as level use
the Bonferroni corrected version LSDαBonferroni (see Remark 8.14 below for an
elaborated explanation).
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Remark 8.14 Significance by chance in multiple testings!

Imagine that we performed an ANOVA in a situation with k = 15 groups.
And then we do all the M = 15 · 14/2 = 105 possible pairwise hypothesis
tests. Assume for a moment that the overall null hypothesis is true, that
is, there really are no mean differences between any of the 15 groups. And
think about what would happen if we still performed all the 105 tests with
α = 0.05! How many significant results would we expect among the 105
hypothesis tests? The answer is that we expect α · 105 = 0.05 · 105 = 5.25,
that is, approximately 5 significant tests are expected. And what would the
probability be of getting at least one significant test out of the 105? The
answer to this question can be found using the binomial distribution

P("At least one significant result in 105 independent tests")

= 1− 0.95105

= 0.9954. (8-29)

So whereas we, when performing a single test, have a probability of α = 0.05
of getting a significant result, when we shouldn’t, we now have an overall
Type I error probability of seeing at least one significant result, when we
shouldn’t, of 0.9954! This is an extremely high (overall) Type 1 risk. This is
also sometimes called the “family wise” Type 1 risk. In other words, we will
basically always with k = 15 see at least one significant pairwise difference,
if we use α = 0.05. This is why we recommend to use a correction method
when doing multiple testings like this. The Bonferroni correction approach
is one out of several different possible approaches for this.

Using the Bonferroni corrected αBonferroni = 0.05/105 in this case for each of
the 105 tests would give the family wise Type 1 risk

P("At least one significant result in 105 independent tests")

= 1− (1− 0.05/105)105

= 0.049 (8-30)

8.2.4 Model control

The assumptions for the analysis we have applied in the one-way ANOVA
model are more verbally expressed as:
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1. The data comes from a normal distribution in each group

2. The variances from each group are the same

The homogeneous variances assumption can be controlled by simply looking at
the distributions within each sample, most conveniently for this purpose by the
group-wise box plot already used in the example above.

The normality within groups assumption could in principle also be investigated
by looking at the distributions within each group - a direct generalization of
what was suggested in Chapter 3 for the two-group setting. That is, one could
do a q-q plot within each group. It is not uncommon though, that the amount of
data within a single group is too limited for a meaningful q-q plot investigation.
Indeed for the example here, we have only 4 observations in each group, and
q-q plots for 4 observations do not make much sense.

There is an alternative, where the information from all the groups are pooled
together to a single q-q plot. If we pool together the 12 residuals, that is, within
group deviations, they should all follow the same zero-mean normal distribu-
tion, given by

εij ∼ N(0, σ2). (8-31)

Method 8.15 Normality control in one-way ANOVA

To control for the normality assumptions in one-way ANOVA we perform a
q-q plot on the pooled set of n estimated residuals

eij = yij − ȳi, j = 1, . . . , ni, i = 1 . . . , k. (8-32)

Example 8.16

For the basic example we get the normal q-q plot of the residuals by

sm.qqplot(fit.resid.values, line='q',a=1/2)
plt.tight_layout()
plt.show()
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print(fit.resid.values)

[-0.225 0.575 0.375 -0.725 -0.400 0.400 0.200 -0.200 -0.975 1.525
0.125 -0.675]

8.2.5 A complete worked through example: plastic types for lamps

Example 8.17 Plastic types for lamps

On a lamp two plastic screens are to be mounted. It is essential that these plastic
screens have a good impact strength. Therefore an experiment is carried out for 5
different types of plastic. 6 samples in each plastic type are tested. The strengths of
these items are determined. The following measurement data was found (strength
in kJ/m2):

Type of plastic
I II III IV V

44.6 52.8 53.1 51.5 48.2
50.5 58.3 50.0 53.7 40.8
46.3 55.4 54.4 50.5 44.5
48.5 57.4 55.3 54.4 43.9
45.2 58.1 50.6 47.5 45.9
52.3 54.6 53.4 47.8 42.5
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We run the following in Python:

D = pd.DataFrame({
'strength': [44.6, 52.8, 53.1, 51.5, 48.2, 50.5, 58.3, 50.0, 53.7, 40.8,

46.3, 55.4, 54.4, 50.5, 44.5, 48.5, 57.4, 55.3, 54.4, 43.9,
45.2, 58.1, 50.6, 47.5, 45.9, 52.3, 54.6, 53.4, 47.8, 42.5],

'plastictype': pd.Categorical(np.tile(np.arange(1, 6), 6))
})

D.boxplot(by='plastictype', grid=False)
plt.suptitle('') # Removing automatic titles
plt.title('')
plt.xlabel('Plastic type')
plt.ylabel('Strength')
plt.tight_layout()
plt.show()
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fit = smf.ols('strength ~ plastictype', data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
plastictype 4.0 491.76 122.9400 18.233863 3.987701e-07
Residual 25.0 168.56 6.7424 NaN NaN

The ANOVA results are more nicely put in a table here:

Df Sum Sq Mean Sq F value Pr(>F)
Plastictype 4 491.76 122.94 18.23 4 · 10−7

Residuals 25 168.56 6.74
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From the box plot we see that there appears to be group mean differences and ex-
tremely low p-value in the ANOVA table confirms this: there is very strong evidence
against the null hypothesis of the five means being the same

H0 : µ1 = · · · = µ5. (8-33)

Model assumptions: the box plots do not indicate clear variance differences (al-
though it can be a bit difficult to know exactly how different such patterns should
be for it to be a problem. Statistical tests exist for such varicance comparisons, but
they are not included here). Let us check for the normality by doing a normal q-q
plot on the residuals:

sm.qqplot(fit.resid.values, line='q', a=1/2)
plt.tight_layout()
plt.show()
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Or using the idea of comparing with repeated plots on the standardized residuals:
(See Section 3.1.8)
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There appears to be no important deviation from normality.

To complete the story about (quantifying) the five plastic types, we first compute the
five means:

print(D.groupby('plastictype',observed=True)['strength'].mean())

plastictype
1 47.9
2 56.1
3 52.8
4 50.9
5 44.3
Name: strength, dtype: float64

And then we want to construct the M = 5 · 4/2 = 10 different confidence intervals
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using Method 8.9. As all nis equal 6 in this case, all 10 confidence intervals will have
the same width, and we can use Remark 8.13 and compute the (half) width of the
confidence intervals, the LSD-value. And since there are 10 multiple comparisons
we will use αBonferroni = 0.05/10 = 0.005:

LSD_0_005 = stats.t.ppf(1 - 0.005 / 2, 25) * np.sqrt(2 * 6.74 / 6)
print(LSD_0_005)

4.61387770149341

So Plastictypes are significantly different from each other if they differ by more than
4.61. A convenient way to collect the information about the 10 comparisons is by
ordering the means from smallest to largest and then using the so-called compact
letter display:

Plastictype Mean
5 44.3 a
1 47.9 ab
4 50.9 bc
3 52.8 cd
2 56.1 d

Plastic types with a mean difference less than the LSD-value, hence not significantly
different share letters. Plastic types not sharing letters are significantly different. We
can hence read off all the 10 comparisons from this table.

One could also add the compact letter information to the box plot for a nice plotting -
it is allowed to be creative (while not changing the basic information and the results!)
in order to communicate the results.

8.3 Two-way ANOVA

8.3.1 Data structure and model

The one-way ANOVA is the natural multi-sample extension of the indepen-
dent two-sample situation covered in Section 3.2. The k samples are hence com-
pletely independent from each other, which e.g. in a clinical experiment would
mean that different patients get different treatments – and hence each patient
only tries a single treatment. Often this would be the only possible way to do a
comparison of treatments.

However, sometimes it will be possible to apply multiple treatments to the same



Chapter 8 8.3 TWO-WAY ANOVA 325

patient (with some time in between). This could then lead to a multi-treatment
setup, where the sample within each treatment consists of the same patients.
This is the natural extension of the paired-design setup covered in Section 3.2.3,
where we “pair” if there is exactly 2 treatments. With more than two treatments
we use the phrase “block”. A block would then be the patient in this case -
and the same blocks then appear in all treatment samples. The “block” name
comes from the historical background of these methods coming from agricul-
tural field trials, where a block would be an actual piece of land within which
all treatments are applied.

Remark 8.18 Design: independent sampling or blocking?

For the project manager who is in charge of designing the study there will
be a choice to make in cases where both approaches are practicable feasi-
ble: should the independent samples approach or the blocked approach be
used? Should we use, say, 4 groups of 20 patients each, that is 80 patients all
together, or should we use the same 20 patients in each of the four groups?
The costs would probably be more or less the same. It sounds nice with 80
patients rather than 20? However, the answer is actually pretty clear if what-
ever we are going to measure will vary importantly from person to person.
And most things in medical studies do vary a lot from person to person due
to many things: gender, age, weight, BMI, or simply due to genetic differ-
ences that means that our bodies will respond differently to the medicine.
Then the blocked design would definitely be the better choice! This is so,
as we will see below, in the analysis of the blocked design the block-main-
variability is accounted for and will not “blur” the treatment difference sig-
nal. In the independent design the person-to-person variability may be the
main part of the “within group” variability used for the statistical analysis.
Or differently put: in a block design each patient would act as his/her own
control, the treatment comparison is carried out “within the block”.

For the actual study design it would in both cases be recommended to ran-
domize the allocation of patients as much as possible: In the independent
design patients should be allocated to treatments by randomization. In the
block design all patients receive all treatments but then one would random-
ize the order in which they receive the treatments. For this reason these two
types of experimental designs are usually called the Completely Randomized
Design and the Randomized Block Design.

We looked above in the one-way part at an example with 3 treatments with
4 observations for each. If the observations were on 4 different persons (and
not 12) it would make sense and would be important to include this person
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variability in the model. The resulting model becomes

Yij = µ + αi + β j + εij, εij ∼ N(0, σ2), (8-34)

so there is an overall mean µ, a treatment effect αi and a block effect β j and our
usual random error term εij.

The design is illustrated in the table below, so we have k treatments (A1, . . . ,Ak)
and l blocks (B1, . . . ,Bl):

B1 . . . Bl
A1 y11 . . . y1,l
...

... . . .
...

Ak yk,1 . . . yk,l

We can now find the parameters in the model above by

µ̂ =
1

k · l
k

∑
i=1

l

∑
j=1

yij, (8-35)

α̂i =

(
1
l

l

∑
j=1

yij

)
− µ̂, (8-36)

β̂ j =

(
1
k

k

∑
i=1

yij

)
− µ̂. (8-37)

Or expressed more compact, with the definitions of the terms obvious from the
above

µ̂ = ¯̄y, (8-38)
α̂i = ȳi· − ¯̄y, (8-39)

β̂ j = ȳ·j − ¯̄y. (8-40)

In a way, these means are the essential information in these data. All the rest we
do is just all the statistics to distinguish signal from noise. It does not change
the fact, that these means contain the core story. It also shows explicitly how we
now compute means, not only across one way in the data table, but also across
the other way. We compute means both row-wise and column-wise. Hence the
name: two-way ANOVA.
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Example 8.19

Lets assume that the data we used in the previous section was actually a result of a
randomized block design and we could therefore write:

Group A Group B Group C
Block 1 2.8 5.5 5.8
Block 2 3.6 6.3 8.3
Block 3 3.4 6.1 6.9
Block 4 2.3 5.7 6.1

In this case we should of course keep track of the blocks as well as the treatments:

y = np.array([2.8, 3.6, 3.4, 2.3,
5.5, 6.3, 6.1, 5.7,
5.8, 8.3, 6.9, 6.1])

treatm = pd.Categorical([1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3])

block = pd.Categorical([1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4])

D = pd.DataFrame({'y': y, 'treatm': treatm, 'block': block})

Now we can calculate the parameter estimates (µ̂ and α̂i, and β̂ j):
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mu = np.mean(y)
alpha = D.groupby('treatm',observed=True)['y'].mean() - mu
beta = D.groupby('block',observed=True)['y'].mean() - mu
print(mu)

5.233333333333333

print(alpha)

treatm
1 -2.208333
2 0.666667
3 1.541667
Name: y, dtype: float64

print(beta)

block
1 -0.533333
2 0.833333
3 0.233333
4 -0.533333
Name: y, dtype: float64

so our estimates of the overall mean (µ) and αi remain the same while the estimated
block effects are β̂1 = −0.53, β̂2 = 0.83, β̂3 = 0.23 and β̂4 = −0.53.

8.3.2 Decomposition of variability and the ANOVA table

In the same way as we saw for the one-way ANOVA, there exists a decomposi-
tion of variation for the two-way ANOVA:
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Theorem 8.20 Variation decomposition

The total sum of squares (SST) can be decomposed into sum of squared
errors (SSE), treatment sum of squares (SS(Tr)), and a block sum of squares
(SS(Bl))

k

∑
i=1

l

∑
j=1

(yij − µ̂)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

l

∑
j=1

(yij − α̂i − β̂ j − µ̂)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

α̂2
i

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

β̂2
j

︸ ︷︷ ︸
SS(Bl)

=
k

∑
i=1

l

∑
j=1

(yij − ȳi· − ȳ·j + ¯̄y)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

(ȳi· − ¯̄y)2

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

(ȳ·j − ¯̄y)2

︸ ︷︷ ︸
SS(Bl)

,

(8-41)

Expressed in short form

SST = SS(Tr) + SS(Bl) + SSE. (8-42)

Note, how the SST and SS(Tr) are found exactly as in the one-way ANOVA.
If one ignores the block-way of the table, the two-way data has exactly the
same structure as one-way data (with the same number of observations in each
group). Further, note how SS(Bl) corresponds to finding a “one-way SS(Tr)”,
but on the other way of the table (and ignoring the treatment-way of the data
table). So from a computational point of view, finding these three, that is, find-
ing SST, SS(Tr) and SS(Bl) is done by known one-way methodology. And then
the last one, SSE, could then be found from the decomposition theorem as

SSE = SST− SS(Tr)− SS(Bl). (8-43)

Example 8.21

Returning to the example we get (SST and SS(Tr) remain unchanged):

beta = beta.values # Converting to numpy array
SSBl = 3 * np.sum(beta**2)
SSE = SST - SSTr - SSBl
print(np.round([SST, SSE, SSTr, SSBl],3))

[35.987 1.242 30.792 3.953]



Chapter 8 8.3 TWO-WAY ANOVA 330

Again, tests for treatment effects and block effects are done by comparing SS(Tr)
or SS(Bl) with SSE:

Theorem 8.22

Under the null hypothesis

H0,Tr : αi = 0, i = 1, 2, . . . , k, (8-44)

the test statistic

FTr =
SS(Tr)/(k− 1)

SSE/((k− 1)(l − 1))
, (8-45)

follows an F-distribution with k− 1 and (k− 1)(l − 1) degrees of freedom.
Further, under the null hypothesis

H0,Bl : β j = 0, j = 1, 2, . . . , l, (8-46)

the test statistic

FBl =
SS(Bl)/(l − 1)

SSE/((k− 1)(l − 1))
, (8-47)

follows an F-distribution with l − 1 and (k− 1)(l − 1) degrees of freedom.

Example 8.23

Returning to our example we get:
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# Test statistics
Ftr = SSTr / (3-1) / ( SSE / ((3-1) * (4-1)))
Fbl = SSBl / (4-1) / ( SSE / ((3-1) * (4-1)))
print(Ftr, Fbl)

74.39597315436248 6.367785234899335

# p-values
pv_tr = 1 - stats.f.cdf(Ftr, 3 - 1, (3 - 1) * (4 - 1))
pv_bl = 1 - stats.f.cdf(Fbl, 4 - 1, (3 - 1) * (4 - 1))
print(pv_tr, pv_bl)

5.823829718287765e-05 0.027048337827318747

or directly in Python:

fit = smf.ols('y ~ treatm + block', data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
treatm 2.0 30.791667 15.395833 74.395973 0.000058
block 3.0 3.953333 1.317778 6.367785 0.027048
Residual 6.0 1.241667 0.206944 NaN NaN

Df Sum Sq Mean Sq F value Pr(>F)
treatm 2 30.79 15.40 74.40 0.0001
block 3 3.95 1.32 6.37 0.0270
Residuals 6 1.24 0.21

we see that the block effect is actually significant on a 5% confidence level, and also
that the p-value for the treatment effect is changed (the evidence against H0,Tr is
stronger) when we accounted for the block effect.

The test statistics and p-values are often collected in an analysis of variance table
as already shown above:
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Source of Degrees of Sums of Mean sums of Test p-
variation freedom squares squares statistic F value
Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 FTr =
MS(Tr)

MSE P(F > FTr)

Block l − 1 SS(Bl) MS(Bl) = SS(Bl)
l−1 FBl =

MS(Bl)
MSE P(F > FBl)

Residual (l − 1)(k− 1) SSE MSE = SSE
(k−1)(l−1)

Total n− 1 SST

8.3.3 Post hoc comparisons

The post hoc investigation is done following the same approach and principles
as for one-way ANOVA with the following differences:

1. Use the MSE and/or SSE from the two-way analysis instead of the MSE
and/or SSE from the one-way analysis

2. Use (l − 1)(k− 1) instead of n− k as degrees of freedom and as denomi-
nator for SSE

With these changes the Method boxes 8.9 and 8.10 and the Remark 8.13 can be
used for post hoc investigation of treatment differences in a two-way ANOVA.

Example 8.24

Returning to our small example we now find the pairwise treatment confidence in-
tervals within the two-way analysis. If the comparison of A and B was specifically
planned before the experiment was carried out, we would find the 95%-confidence
interval as:

print(muis[0] - muis[1] + np.array([-1,1]) *
stats.t.ppf(0.975, (4-1)*(3-1)) * np.sqrt(SSE/((4-1) * (3-1))*(1/4 + 1/4)))

[-3.662 -2.088]

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:
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tobs = (muis[0] - muis[1]) / np.sqrt(SSE/6 * (1/4 + 1/4))
print(2 * (1 - stats.t.cdf(abs(tobs), 6)))

0.0001094734143394227

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =

0.017:

alpha = alpha.values
alpha_bonf = 0.05 / 3
# A vs. B
print(alpha[0] - alpha[1] + np.array([-1, 1]) *

stats.t.ppf(1 - alpha_bonf/2, 6) * np.sqrt(SSE/6 * (1/4 + 1/4)))

[-3.932 -1.818]

# A vs. C
print(alpha[0] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1 - alpha_bonf/2, 6) * np.sqrt(SSE/6 * (1/4 + 1/4)))

[-4.807 -2.693]

# B vs. C
print(alpha[1] - alpha[2] + np.array([-1, 1]) *

stats.t.ppf(1 - alpha_bonf/2, 6) * np.sqrt(SSE/6 * (1/4 + 1/4)))

[-1.932 0.182]

and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that.
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8.3.4 Model control

Also model control runs almost exactly the same way for two-way ANOVA as
for one-way:

• Use a q-q plot on residuals to check for the normality assumption

• Check variance homegenity by categorized box plots

The only difference is that the box plotting to investigate variance homogeneity
should be done on the residuals - NOT on the actual data. And that we can
investigate both potential treatment heterogeneity as block heterogeneity.

Example 8.25

First the residual normality plot:

sm.qqplot(fit.resid.values, line='q', a=1/2)
plt.tight_layout()
plt.show()
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Then the investigation of variance homogeneity:
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D['residuals'] = fit.resid.values # Add residuals to DataFrame
fig, ax = plt.subplots(ncols=2)
D.boxplot(column='residuals', by='treatm', ax=ax[0], grid=False)
ax[0].set_title('Residuals by treatment')
D.boxplot(column='residuals', by='block', ax=ax[1], grid=False,)
ax[1].set_title('Residuals by block')
plt.suptitle('')
plt.tight_layout()
plt.show()
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Actually, if we’ve had data with a higher number of observations for each block, we
might have had a problem here as blocks 2 and 3 appears to be quite different on
their variability, however since there are very few observations (3 in each block) it is
not unlikely to get this difference in variance when there is no difference (but again:
it is not very easy to know, exactly where the limit is between what is OK and what
is not OK in a situation like this. It is important information to present and take into
the evaluation of the results, and in the process of drawing conclusions).

8.3.5 A complete worked through example: Car tires

Example 8.26 Car tires

In a study of 3 different types of tires (“treatment”) effect on the fuel economy, drives
of 1000 km in 4 different cars ("blocks") were carried out. The results are listed in the
following table in km/l.



Chapter 8 8.3 TWO-WAY ANOVA 336

Car 1 Car 2 Car 3 Car 4 Mean
Tire 1 22.5 24.3 24.9 22.4 22.525
Tire 2 21.5 21.3 23.9 18.4 21.275
Tire 3 22.2 21.9 21.7 17.9 20.925
Mean 21.400 22.167 23.167 19.567 21.575

Let us analyse these data with a two-way ANOVA model, but first some explorative
plotting:

# Collecting the data in a data frame
D = pd.DataFrame({

'y': [22.5, 24.3, 24.9, 22.4,
21.5, 21.3, 23.9, 18.4,
22.2, 21.9, 21.7, 17.9],

'car': pd.Categorical([1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]),
'tire': pd.Categorical([1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]),

})

fig, ax = plt.subplots(ncols=2)
D.boxplot(column='y', by='tire', ax=ax[0],grid=False)
ax[0].set_title('Boxplots by tire')
D.boxplot(column='y', by='car', ax=ax[1],grid=False)
ax[1].set_title('Boxplots by car')
plt.suptitle('')
plt.tight_layout()
plt.show()
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Then the actual two-way ANOVA:
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fit = smf.ols('y ~ car + tire', data=D).fit()
anova = sm.stats.anova_lm(fit)
print(anova)

df sum_sq mean_sq F PR(>F)
car 3.0 25.175833 8.391944 7.025814 0.021726
tire 2.0 15.926667 7.963333 6.666977 0.029888
Residual 6.0 7.166667 1.194444 NaN NaN

Df Sum Sq Mean Sq F value Pr(>F)
car 3 25.18 8.39 7.03 0.0217
tire 2 15.93 7.96 6.67 0.0299
Residuals 6 7.17 1.19

Conclusion: Tires (treatments) are significantly different and Cars (blocks) are sig-
nificantly different.

And the model control (for the conclusions to be validated). First the residual nor-
mality plot:

sm.qqplot(fit.resid.values, line='q', a=1/2)
plt.tight_layout()
plt.show()
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Then the investigation of variance homogeneity:
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D['residuals'] = fit.resid.values # Add residuals to DataFrame
fig, ax = plt.subplots(ncols=2)
D.boxplot(column='residuals', by='car', ax=ax[0],grid=False)
ax[0].set_title('Residuals by car')
D.boxplot(column='residuals', by='tire', ax=ax[1],grid=False)
ax[1].set_title('Residuals by tire')
plt.suptitle('')
plt.tight_layout()
plt.show()
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It seems like the variance for Car 2 and Car 3 is difference, however, as in the previ-
ous example, there are very few observations (only 3) for each car, hence this differ-
ence in variation is not unlikely if there is no difference. Thus we find that there do
not see any important deviations from the model assumptions.

Finally, the post hoc analysis, first the treatment means:

print(D.groupby('tire',observed=True)['y'].mean())

tire
1 23.525
2 21.275
3 20.925
Name: y, dtype: float64

We can find the 0.05/3 (Bonferroni-corrected) LSD-value from the two-way version
of Remark 8.13:
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LSD_bonf = stats.t.ppf(1-0.05/6, 6) * np.sqrt(2*1.19/4)
print(LSD_bonf)

2.5358194018640283

So tires are significantly different from each other if they differ by more than 2.54. A
convenient way to collect the information about the 3 comparisons is by ordering the
means from smallest to largest and then using the so-called compact letter display:

Tire Mean
3 20.925 a
2 21.275 a b
1 23.525 b

There is no significant difference between mean of Tire 2 and 3, and no significant
difference between mean of 2 and 1, but there is significant difference between mean
of 1 and 3.

8.4 Perspective

We have already seen how the R-version of the ANOVA, both one-way and
two-way, are carried out by the R-function lm. We also used lm for simple and
multiple linear regression (MLR) analysis in Chapters 5 and 6. “lm” stands for
“linear model”, and in fact from a mathematical perspective all these models
are what can be termed linear models, or sometimes general linear models. So
differently put, the ANOVA models can in fact be expressed as multiple linear
regression models, and the theory and matrix notation etc. from MLR can be
used to also work with ANOVA models.

This becomes convenient to understand if one moves on to situations, models
and statistical analysis going beyond the current course. An example of this
would be situations where we have as well factors as quantitative (continuous)
regression input in the same data set.

Important to know also is that the two basic ANOVA versions presented in this
material is just the start to be able to handle more general situations. An exam-
ple could be that, a two-way ANOVA could also occur in a different way than
shown here: if we perform what would be a completely randomized study,
that is, we have independent sampled groups, but with the groups being repre-
sented by a two-way treatment factor structure, say, factor A with 5 levels and
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factor B with 3 levels. Hence, we have all 15 groups consisting of all combina-
tions of the two treatments, but with several observations within each of the 15
groups. This would sometimes be called a two-way ANOVA with replications,
whereas the randomized block setting covered above then would be the two-
way ANOVA without replication (there is only and exactly one observation for
each combination of treatment and block).

And then the next step could be even more than two treatment factors, and
maybe such a multi-factorial setting could even be combined with blocking and
maybe some quantitative x-input (then often called covariates) calling for ex-
tensions of all this.

Another important extension direction are situations with different levels of ob-
servations/variability: there could be hierarchical structures in the data, e.g.
repeated measurement on an individual animal, but having also many animals
in the study, and animals might come from different farms, that lies in different
regions within different countries. This calls for so-called hierarchical models,
multi-level models, variance components models or models, where both treat-
ment factors and such hierarchical random effects are present – the so-called
mixed models.

All of this and many other good things can be learned in statistics courses build-
ing further on the methods presented in this material!
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Chapter 9

The general linear model

9.1 Matrix formulation of summary statistics

In this chapter we will focus on second order moment representations, i.e. av-
erage/mean, variance/sample variance, and covariances/sample covariances.
The choice of second order moment representation is closely related to the mul-
tivariate normal (Gaussian) distribution, which is characterized by the second
order moment representation. We start by a small example.

Example 9.1 Height and weight

The scatter-plot below show height and weight (gray dots) of around 600 males in
the age 25-50 years. From the plot it is clear that there is some correlation between
the two variables, and hence that a good description of data include the correlation
between the two.

The contour lines are related to a multivariate normal distribution, that is estimated
to describe the data as good a possible, and define prediction regions. The red ar-
rows are eigen-vectors of the variance-covariance matrix.

In this case observations are two dimensional and one observation consist of the
observed height and the observed weight.
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Assume that we have associated observations of different variables (e.g. height
and weight of a number of persons). In this section we will be interested in
average, observed variance, observed covariance and observed correlation. The
k-dimensional observations will be denoted by

yi =




y1,i
...

yk,i


 , (9-1)

if the are N observation then the average vector is given by

ȳ =




ȳ1
...

ȳk


 =

1
N

N

∑
i=1

yi, (9-2)

recall that the observed covariance between two vector of observations, yl,· and
ym,·, is given by

slm =
1

N − 1

N

∑
i=1

(yli − ȳl)(ymi − ȳm), (9-3)

which can be collected in an observed variance-covariance matrix by

S =
1

N − 1

N

∑
i=1

(yi − ȳ)(yi − ȳ)T. (9-4)
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The matrix S is often, in particular when reported, decomposed into standard
deviation and correlations

S = σ̂Rσ̂, (9-5)

where σ̂ is a diagonal matrix with the observed standard deviation in the diag-
onal (i.e σ̂ii =

√
Sii and σ̂ij = 0 for i 6= j), and R is the collection of all pairwise

correlations. As a direct consequence we can write the correlation matrix as

R = σ̂−1Sσ̂−1. (9-6)

The main advantage of (9-6) is that the correlation coefficients are easy to inter-
pret, while covariances are not.

Example 9.2 Height and weight cont.

For the data presented in Example 9.1 the second order moment representation can
be calculated as

S = dat.cov()
mu = dat.mean()
print(mu)

height 180.774671
weight 78.351891
dtype: float64

print(S)

height weight
height 53.304992 50.00331
weight 50.003310 108.62449

hence average height is about 180 cm and the average weight is about 78 kg. Further
the variances and covariances is also calculated and the shape of the ellipsoids in
Example 9.1 is described by those. As noted in the text it is usual practice to report
standard deviations and correlation, as presented below, rather than the variance-
covariance matrix.
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R = dat.corr()
sig_hat = np.sqrt(dat.var())
print(sig_hat)

height 7.301027
weight 10.422307
dtype: float64

print(R)

height weight
height 1.000000 0.657129
weight 0.657129 1.000000

hence the standard deviations are 7 cm and 10 kg, respectively, and the correlation
is about 0.66.

9.2 Preliminaries from linear algebra

This chapter rely on a many results from linear algebra, and we state a some
results that are important for the further development. Some of these are stated
without proof.
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Lemma 9.3 Eigenvalue decomposition of symmmetric matrices

For a quadratic matrix A ∈ Rn×n the iegenvalue decomposition can be writ-
ten as

A = VΛV−1, (9-7)

where V is the eigen-vectors and Λ is a diagonal matrix with the eigenvalues
along the diagonal
If A ∈ Rn×n is a symmetric matrix then the eigenvalue decomposition can
be written as

A = VΛV T, (9-8)

i.e. V−1 = V T. Further the rank of A is equal to the number a non-zero
eigenvalues.

Example 9.4

In Example 9.1 we plotted the observed data along with some ellipsoids (we will get
back to those). In the same plot there are two red arrows, these represent the eigen-
vectors with length proportional to the eigen values of the variance-covariance ma-
trix of the observed data. In Python the eigenvalues and eigen vector can be calcu-
lated by

Eigen = eig(S)
Eigvals, Eigvectors = eig(S)
print(Eigvals)

[ 23.821 138.108]

print(Eigvectors)

[[-0.861 -0.508]
[ 0.508 -0.861]]

Hence the arrows both start in the observed average, ȳ, and extend to

ȳ + k
√

23.8 ·
[−0.86

0.51

]
; and ȳ + k

√
138.1 ·

[
0.51
0.86

]
, (9-9)
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as stated above we will get back to the exact choice of k, but it is related to a predic-
tion interval/region for the observations.

We state the following permutation result for permutation in traces

Lemma 9.5 Permutation in traces

For matrices A, B and C such that that the products ABC, BCA and CAB
can be formed then

Trace(ABC) = Trace(BCA) = Trace(CAB). (9-10)

We will sometimes need to update the matrix inverses, and the following lemma
and corollary is useful for that.

Lemma 9.6 Rank-1 update of matrix inverse

Let X ∈ Rn×p be a matrix such that A = (XTX)−1 is well defined (i.e. XTX
have full rank) and further let X̃ = [X v], with v ∈ Rn a vector, then

(X̃TX̃)−1 =

[
A + AXTvvT X A

vTv−vT X AXTv
−AXTv

vTv−vT X AXTv
−vT X A

vTv−vT X AXTv
1

vTv−vT X AXTv

]
(9-11)

We will use matrices of the form X(XTX)−1XT (which, as we will show, is an
othogonal projection matrix) often, and the following corollary to Lemma 9.5
apply
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Corollary 9.7 Rank-1 update of projection matrix

Let X and X̃ be as in Lemma 9.6, define H = X(XTX)−1XT and H̃ =
X̃(X̃TX̃)−1X̃T, then

H̃ =H +
1
k

(
HvvT H − vvT H − HvvT + vvT

)

=H +
1
k
(I − H) vvT (I − H)

(9-12)

with k = vTv− vTX AXTv = vT (I − H) v.

Proof

From Lemma 9.6, we have

(X̃TX̃)−1 =

[
A + AXTvvT X A

vTv−vT X AXTv
−AXTv

vTv−vT X AXTv
−vT X A

vTv−vT X AXTv
1

vTv−vT X AXTv

]
(9-13)

and hence

H̃ =
[
X v

]
[

A + AXTvvT X A
vTv−vT Hv

−AXTv
vTv−vT Hv

−vT X A
vTv−vT Hv

1
vTv−vT Hv

] [
XT

vT

]

=
[

X A + HvvT X A
vT(I−H)v − vvT X A

vT(I−H)v
−Hv

vT(I−H)v + v
vT(I−H)v

] [XT

vT

]

=H +
HvvT H

vT(I − H)v
− vvT H

vT(I − H)v
− HvvT

vT(I − H)v
+

vvT

vT(I − H)v

(9-14)

which is the stated result.

�

9.3 Multivariate distributions

We will focus the multivariate normal distribution, but start by some general
definitions and results, related to multivariate distributions.
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Definition 9.8 Multivariate probability density functions

A multivariate probability density function for the random variable Y ∈ Rn,
is a function from Rn into R0,

f (y) = f (y1, y2, ..., yn) ≥ 0, (9-15)

such that
∫

f (y)dy =
∫ ∫

· · ·
∫

f (y1, y2, ..., yn)dy1dy2 · · · dyn = 1, (9-16)

further the marginal distribution for Yi is given by

fYi(yi) =
∫ ∫

· · ·
∫

f (y1, y2, ..., yn)dy1 · · · dyi−1dyi+1 · · · dyn. (9-17)

If a random variable Y = [YT
1 , YT

2 ]
T have the joint density fY(y), then the

marginal density of Y1 is

fY1(y1) =
∫

fY(y)dy2. (9-18)

The density function is the fundamental property of a random variable that
describe everything about the random variable, here we are mostly interested
in the second order moment representation (mean, variance and covariance).
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Definition 9.9 Second order moment representation

If a random vector Y ∈ Rn have the probability density function fY then the
mean and variance of Yi is

E[Yi] =µi =
∫

yi fYi(yi)dyi

V[Yi] =σii =
∫
(yi − µi)

2 fYi(yi)dyi,
(9-19)

and the covariances between Yi and Yj is

Cov[Yi, Yj] = σij =
∫
(yi − µi)(yj − µj) fYi,Yj(yi, yj)dyidyj. (9-20)

Further the mean value vector of a random vector Y = [Y1, ..., Yn]T is defined
by

µ = E[Y ] =




E[Y1]
...

E[Yn]


 , (9-21)

and the variance-covariance matrix is

Σ = V[Y ], (9-22)

where the elements of Σ are Σij = Cov[Yi, Yj]. µ and Σ is referred to as the
second order moment representation.

The covariance matrix between two random vectors Y1 and Y2 (not necessarily
of the same dimension) is

Σ12 = Cov[Y1, Y2], (9-23)

meaning the Σ12
ij = Cov[Y1,i, Y2,j]. Now we can write the variance-covariance

matrix of the random vector [YT
1 , YT

2 ]
T as

V
[

Y1
Y2

]
=

[
Σ11 Σ12

Σ21 Σ22

]
, (9-24)

where (of course) Σ12 =
(
Σ21)T. We are now ready for the calculation rules for

random vectors.
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Theorem 9.10 Covariance calculation rules

Let the variance-covariance matrix of [YT
1 , YT

2 ]
T be as in (9-24) and let b be a

vector, and A and B be matrices of appropriate dimensions, then

E[AY1 + b] =AE[Y1] + b (9-25)

Cov[AY1, BY2] =ACov[Y1, Y2]BT = AΣ12BT (9-26)

and as a special case

V[AY1] = AΣ11AT. (9-27)

Let A and B be such that AY1 + BY2 can be formed, then

V[AY1 + BY2] =AΣ11AT + BΣ22BT + AΣ12BT + BΣ21AT. (9-28)

In addition to the second order moment representation, independence is a very
important concept in statistics, the formal definition is

Definition 9.11 Independence of random vectors

Let fY be the joint distribution of the random vector Y = [YT
1 , YT

2 ]
T, then Y1,

and Y2 are independent if

fY(y) = fY1(y1) fY2(y2). (9-29)

The definition imply that if Y1 and Y2 are independent then Cov[Y1, Y2] = 0.
In general the opposite is not true (i.e. no correlation does not imply indepen-
dence).

Section 9.3.1 below consider the matrix formulation of error propagation. It is
not used in the further development but included for completeness of matrix
formulations.
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9.3.1 Error propagation

We consider a random vector Y ∈ Rn with

E[Y ] = µ

V[Y ] = Σ,
(9-30)

now consider an (possibly nonlinear) function f (Y) ∈ Rm, the function f can
be approximated around any point y0 by the Taylor approximation

f (Y) = f (y0) + J f (y0)(Y − y0) + “HOT′′, (9-31)

where ′′HOT′′ is short for Higher Order Terms. Now if we choose y0 = µ, we
can write

f (Y) ≈ f (µ) + J f (µ)(Y − µ), (9-32)

notice here that µ and f (µ) are non random vectors, and the Jacobian, J f (µ), is
a non-random matrix, and therefore we can directly write

E[ f (Y)] ≈ f (µ) + J f (µ)E[(Y − µ)]

= f (µ),
(9-33)

and

V[ f (Y)] ≈J f (µ)V[(Y − µ]JT
f (µ)

=J f (µ)ΣJ f (µ)
T.

(9-34)

Example 9.12 Body Mass Index

Body mass index (BMI) is often used as an indicator of the health of a person, BMI
is defined as

BMI =
w
h2

m
, (9-35)

where w is the weight [kg] and hm [m] is the height, in our case we measure height
in cm and therefore we get

BMI =
w

h2
cm

104, (9-36)

and the Jacobian is

JBMI(h, v) =
[
−2 v

h3
1
h2

]T · 104, (9-37)

based on the data from Example 9.1 we can approximate the variance of BMI (for
the considered population) by
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mu

height 180.774671
weight 78.351891
dtype: float64

h = mu["height"]
w = mu["weight"]
J = np.array([-2 * w / h**3 * 10000, 1 / h**2 * 10000])
J @ dat.cov() @ J.T

np.float64(5.804464687904143)

hence the variance is approximated by 5.8 kg2/m4 or a standard deviation of 2.4
kg/m2.

9.3.2 The multivariate Gaussian distribution

In this section we cover some important results for the multivariate normal dis-
tribution and the relation to the χ2-distribution. These are important for the
development of statistical tests related to the general linear model (LM1), which
is the main topic of the chapter.

A common definition of the multivariate normal distribution is that the pdf of
the random variable Y ∈ Rn is

fY(y) =
1

(2π)n/2
√
|Σ|

e−
1
2 (y−µ)TΣ−1(y−µ), (9-38)

and the parameters (µ and Σ) are the second order moment representation, i.e.

E[Y ] =µ

V[Y ] =Σ,
(9-39)

and we write

Y ∼ Nn(µ, Σ). (9-40)

1We use the abbreviation LM rather than GLM as GLM is usually used for the more general
generalized linear model.
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We will sometimes omit the subscript n if it is clear from context (or if it is not
important).

Example 9.13

The ellipsoids in the figure in Example 9.1 are level curves in a 2-dimensional nor-
mal with mean value equal the observed average and variance-covariance equal the
observed variance-covariance matrix (see Example 9.2).

Theorem 9.14 Independence of normal random variables

If Y = [YT
1 , YT

2 ]
T ∼ N(µ, Σ), and

Cov[Y1, Y2] = 0, (9-41)

then Y1 and Y2 are independent.

Proof

See Exercise 1.

�

Note that the assumption of the joint distribution is important in Theorem 9.14,
i.e. it is not enough that the marginal distribution of the random variables in
the vector are normal. The next example illustrate the point.

Example 9.15

Let Y1 ∼ N(0, 1) and let P(X = −1) = P(X = 1) = 1
2 independent of Y1, and define

Y2 = XY1, then the marginal distribution of Y2 is the standard normal and

Cov[Y1, Y2] =Cov[Y1, XY1] = E[Y1XY1] = E[X]E[Y2
1 ]

=E[X]V[Y1] = E[X] = 0,
(9-42)

hence no correlation, but clearly the variables are not independent, as knowledge of
Y1 limit the number of possible outcomes of Y2 to two possible values (Y1 or −Y1).
For a graphical simulation based analysis see Exercise 2.
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Theorem 9.16 Normalization of normal random vectors

If Y ∼ N(µ, Σ), with the pdf of Y as defined in (9-38) (implying that Σ is
positive definite), then

Z = Σ−
1
2 (Y − µ) ∼ N(0, I) (9-43)

with Σ
1
2 = VΛ

1
2 (implying that Σ

1
2 Σ

T
2 = Σ), where Λ is a diagonal matrix

with the eigenvalues of Σ in the diagonal and V is the corresponding eigen-
vectors.

Proof

Σ is a real symmetric matrix and hence it can be written as (see Lemma 9.3)

Σ = VΛV T, (9-44)

and Σ−
1
2 = Λ−

1
2 V−1, also V is an orthogonal basis (hence V−1 = V T), and hence

V[Σ−
1
2 Y ] =Σ−

1
2 V[Y ]Σ−

T
2

=Λ−
1
2 V−1VΛV TV−TΛ−

1
2

=Λ−
1
2 V TVΛV TVΛ−

1
2

=Λ−
1
2 ΛΛ−

1
2

=I,

(9-45)

and since E[Y ] = µ the proof is completed.

�

The definition (9-38) clearly require Σ to be inevitable, and a more general defi-
nition, which we will need in the following, is
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Definition 9.17 Multivariate normal distribution

Let Zi, i = 1, ..., n, be iid. standard normal random variables, s.t. (Z =
[Z1, ..., Zn]T)

Z ∼ N(0, I). (9-46)

Then the random vector Y = AZ + b, with A ∈ Rm×n and b ∈ Rm, follow
an m-dimensional multivariate normal distribution with

E[Y ] =b

V[Y ] =AAT,
(9-47)

this holds also when AAT is not positive definite.

The definition imply that any linear combination of a multivariate normal ran-
dom vector is also a multivariate normal random vector and further if the co-
variance between two elements of a multivariate normal vector is zero the they
are independent.

As an example suppose we have n iid. standard normal random variables (Zi)
and form the average of those (Z̄) and consider the difference between the av-
erages and the individual random variables (we denote these as residuals, r)

r =




Z1 − Z̄
...

Zn − Z̄


 = AZ; Z ∼ N(0, I), (9-48)

with

A =




1− 1
n − 1

n · · · − 1
n

− 1
n 1− 1

n
. . . ...

... . . . . . . − 1
n

− 1
n · · · − 1

n 1− 1
n



= I − 1

n
E. (9-49)

The matrix A is in Rn×n, but any column (or row) can be written as the (nega-
tive) sum of the remaining columns and therefore the rank of A is equal n− 1
(not n, see Exercise 3). Further in this special case, we have

AAT = A2 = A. (9-50)

For a proof of the claims in (9-50) see Exercise 3. We will come back to the
particular properties (9-50) of the matrix (9-49), but for now we can simply write

r ∼ N(0, A), (9-51)
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this imply that the pdf of r cannot be written explicitly (the inverse of A does
not exist), and further that the covariance between ri and rj is not 0 (implying
that they are not independent).

We can also show that r and Z̄ are independent, to that end consider
[

r
Z̄

]
=

[
A

1
n 1T

]
Z, (9-52)

hence the vector [rT, Z̄]T follow a multivariate normal distribution and if the
covariance between the two is zero then r and Z̄ are independent,

Cov[r, Z̄] =Cov
[

AZ,
1
n

1TZ
]

=
1
n

ACov [Z, Z] 1
(9-53)

since V[Z] = I it reduce to

Cov[r, Z̄] =
1
n

A1, (9-54)

and since the row-sums of A is zero (see Exercise 3) we get

Cov[r, Z̄] =0, (9-55)

hence r and Z̄ are independent. For the development of statistical test we need
to derive the relation between the multivariate normal and the χ2-distribution,
this is the subject of the next section.

9.4 The multivariate normal and the χ2-distribution

From the definition of the χ2-distribution (see Theorem 2.78) we know that, if
Z ∼ Nn(0, I) then

ZTZ ∼ χ2(n). (9-56)

A simple consequence of Theorem 9.16 is

Corollary 9.18

With Y ∈ Rn as in Theorem 9.16 then

(Y − µ)TΣ−1(Y − µ) ∼ χ2(n). (9-57)
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Proof

See Exercise 4.

�

Corollary 9.18 imply that if Y ∼ Nn(µ, Σ) then

P((Y − µ)TΣ−1(Y − µ) ≤ χ2
1−α) = 1− α, (9-58)

and hence level curves of the pdf describe probability regions that can be deter-
mined from the χ2-distribution.

Example 9.19

In Example 9.1 we saw level curves of the Gaussian pdf, these are described by
curves where

(Y − µ)TΣ−1(Y − µ) = χ2
1−α (9-59)

with µ equal the observed average of height and weight, and Σ equal the observed
variance-covariance (see Example 9.4). Also the values of α is set at 0.5, 0.05 and
0.005 respectively for the three curves. Hence the length of the red arrow in the plot
of Example 9.1 is

χ2
0.95 · 23.8; and χ2

0.95 · 138.1 (9-60)

with χ2
0.95 a quantile of the χ2-distribution with 2 degrees of freedom, i.e. (referring

to Example 9.4) k =
√

χ2
0.95.

Using the from given in (9-48), we can write the quadratic form as (using r =
Z− 1Z̄)

ZTZ =(r + 1Z̄)T(r + 1Z̄)

=rTr + (Z− 1Z̄)T1Z̄ + 1TZ̄(Z− 1Z̄) + Z̄1T1Z̄

=rTr + (nZ̄− nZ̄)Z̄ + Z̄(nZ̄− nZ̄) + nZ̄2

=rTr + nZ̄2

(9-61)

since nZ̄2 ∼ χ2(1), and Z̄ and r are independent then we must have

rTr ∼ χ2(n− 1). (9-62)
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Example 9.20

Assume that Y ∼ Nn(1µ, σ2I), this is equivalent to

Y = 1µ + ε; ε ∼ Nn(0, σ2I), (9-63)

and the “residuals” can be written as

r =Y − 1Ȳ

=1µ + ε− 1µ− 1ε̄

=ε− 1ε̄,

(9-64)

hence not depending on µ, and in light of the discussion above we also have that
1

σ2 rTr ∼ χ2(n − 1), and further if µ = 0 (the null-hypothesis) then Ȳ2/(σ2/n) ∼
χ2(1), and hence if µ = 0 then

Fobs =
Ȳ2

σ2/n
1
n

1
σ2 rTr/(n− 1)

=
nȲ2

rTr/(n− 1)
∼ F(1, n− 1), (9-65)

Fobs is a test statistic and conclusions about µ can be based on critical values or p-
values.

The derivations above is a special case of Cochran’s theorem, which we will
state below, but first we need the concept of orthogonal projection matrices, as
stated in the next definition.

Definition 9.21 Orthogonal projections

A matrix P is an orthogonal projection matrix if and only if

• P is symmetric, i.e. P = PT

• P is idempotent, i.e. P2 = P.

If P is a projection matrix then so is I − P, this is easily shown by

(I − P)T =IT − PT = I − P

(I − P)2 =I + P2 − P− P = I − P.
(9-66)

Using the results above it is easy to show that the matrix A in (9-49) is an or-
thogonal projection matrix (see Exercise 5).
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Lemma 9.22 Properties of orthogonal projection matrices

If P is an orthogonal projection matrix, then

1. The eigenvalues λi of P are either 0 or 1, and Rank(P) = ∑i λi.

2. Rank(P) = Trace(P).

Proof

Let Λ and V a diagonal matrix with the eigen-values along the diagonal, and the
collection of eigen-vectors. Then 1) P2 = P and hence VΛV T = VΛV TVΛV T =
VΛ2V T or Λ = Λ2 implying that λi = λ2

i which can only happen if λi = 0 or λi = 1
and hence the number of non-zero eigenvalues (which is the rank) is ∑i λi. 2) see
Exercise 6.

�

We again turn to the simple example (9-48). We have already seen that A is a
projection matrix and that Rank(A) is n− 1, using the results in Lemma 9.22 we
also get

Trace(A) =
n

∑
i=1

(
1− 1

n

)
= n− 1. (9-67)

The main result for construction test statistics is Cochran’s theorem as given
below.

Theorem 9.23 Cochran’s theorem

Let Y ∼ Nn(0, σ2I), and let Hi be orthogonal projection matrices such that

1
σ2 YTY =

1
σ2

K

∑
i=1

YT HiY (9-68)

i.e. ∑K
i=1 Hi = In, with Rank(Hi) = pi, and ∑i pi = n then

1. 1
σ2 YT HiY ∼ χ2(pi)

2. YT HiY and YT HjY are independent for i 6= j.
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As we will see in later sections Cochran’s theorem is useful for constructing test
statistics and determine their distributions. We prove the theorem in Section
9.4.1 below.

The independence condition in Theorem 9.23 is equivalent to

Cov[YT Hi, HjY ] = 0. (9-69)

In the simple example in eps. (9-48) we have

Z = AZ + (I − A)Z = H1Z + H2Z (9-70)

and it is easy to show that Cov[H1Z, H2Z] = 0 (see Exercise 9).

We can also use Cochran’s theorem to find the distribution of rTr, the following
is obviously true

Z =AZ + (I − A)Z
=r + (I − A)Z,

(9-71)

now Rank(I − A) = n− 1, and hence by Cochran’s theorem

rTr =ZT AT AZ

=ZT AZ ∼ χ2(n− 1).
(9-72)

This conclude the fundamental tools we need for the development of test statis-
tics in the general linear model. The next section present the proof of Cochran’s
Theorem.

9.4.1 Proof of Cochran’s Theorem*

Note that 1
σY ∼ N(0, I) and hence Yi and Yj are independent for all i 6= j.

Therefore

1
σ2 YYT =

1
σ2

n

∑
i=1

Y2
i ∼ χ2(n), (9-73)

and further for any sub-sum

1
σ2

p

∑
i=1

Y2
i ∼ χ2(p). (9-74)
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Now consider the case K = 2,

1
σ2 YTY =

1
σ2 YT H1Y +

1
σ2 YT H2Y , (9-75)

and let Vi be the eigen-vectors corresponding to Hi, and Λi diagonal matri-
ces with the corresponding eigenvalues, and consider the linear transformation
Z = V1Y , then

ZTZ = YTV T
1 V1Y = YTY , (9-76)

and insert in (9-75)

1
σ2 YTY =

1
σ2 ZTZ

=
1
σ2 YTV T

1 H1V1Y +
1
σ2 YTV T

1 H2V1Y

=
1
σ2 YTΛ1Y +

1
σ2 YTV T

1 H2V1Y ,

(9-77)

without loss of generality we can assume that the first p1 diagonal elements of
Λ is 1 and the remaining are zero and hence

YTΛ1Y =
p1

∑
i=1

Y2
i (9-78)

and therefore

YTV T
1 H2V1Y =

n

∑
i=p1+1

Y2
i . (9-79)

The two terms are independent since they depend on different Y’s, and it fol-
lows that

1
σ2 YTΛ1Y ∼χ2(p1)

1
σ2 YTV T

1 H2V1Y ∼χ2(n− p1).
(9-80)

This conclude the proof of the case K = 2. For K > 2 we first consider K = 3,

1
σ2 YTY =

1
σ2 YT H1Y +

1
σ2 YT H2Y +

1
σ2 YT H3Y

=
1
σ2 YT H1Y +

1
σ2 YT HRY

=
1
σ2 YTΛ1Y +

1
σ2 YT(I −Λ1)Y

(9-81)
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with HR = H2 + H3, now consider the splitting Y = [YT
1 YT

R ]
T. Note that

YR ∼ Nn−p1(0, σ2I) and YT
R YR = YT(I −Λ1)Y following the arguments for the

case K = 2 we have

YT
R YR =YT(I −Λ1)Y

=YT(I −Λ1)H2(I −Λ1)Y + YT(I −Λ1)H3(I −Λ1)Y

=YT
R H̃2YR + YT

R H̃3YR,

(9-82)

and

1
σ2 YT(I −Λ1)Y =

1
σ2 YT(I −Λ1)Λ2Y +

1
σ2 YT(I −Λ1)(I −Λ2)Y

=
1
σ2 YTΛ2Y +

1
σ2 YT(I −Λ1 −Λ2)Y

(9-83)

where the first term on the rhs follow a χ2(p2)-distribution and the second term
follow a χ2(n− p1− p2)-distribution, and hence the quadratic form can be writ-
ten as

1
σ2 YTY =

1
σ2 YT H1Y +

1
σ2 YT H2Y +

1
σ2 YT H3Y

=
1
σ2 YTΛ1Y +

1
σ2 YTΛ2Y +

1
σ2 YT(I −Λ1 −Λ2)Y .

(9-84)

Cases where K > 3 follow by induction.

9.5 The general linear model

The models covered in Chapter 3, 5, 6, and 8 can all be written as

Y = Xβ + ε, ε ∼ N(0, σ2I). (9-85)

Any model that can be written in the form (9-85) is called a general linear model.
Y is the outcome of interest, the known matrix X is called the design matrix, β is
the mean value parameters that we should estimate based on the design matrix
and the outcomes, ε is the residual errors, with variance σ2, and further we
assume that all residuals are iid.

In this section we will cover the general linear model in very general terms,
and in later sections we will present different examples (including the model
covered in Chapters 3, 5, 6, and 8). As we do not know the mean parameter we
will have to rely on estimates/estimators of them, i.e. we observe

Y =X β̂ + r, r ∼ N(0, Σ)

=Ŷ + r, r ∼ N(0, Σ),
(9-86)
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where r is the observed residuals (i.e. the realized version of ε), Σ depend on
design matrix (X) and σ2.

Now define the residual sum of squares as

RSS(β) = rTr = (Y − Xβ)T(Y − Xβ), (9-87)

from the perspective of RSS the best estimator is

β̂ = argminβRSS(β), (9-88)

the result of this minimization problem is given in the next theorem:

Theorem 9.24 Least square estimator

Assuming that XTX is invertible and that Y ∼ N(Xβ, σ2I), then the least
square estimator (β̂) of the mean value parameters (β) in the general linear
model are given by

β̂ = (XTX)−1XTY , (9-89)

further β̂ is a central estimator (E[β̂] = β) and the variance-covariance ma-
trix of the estimator is

V[β̂] = σ2(XTX)−1. (9-90)

Throughout this document we will assume that XTX is invertible, and if this is
not the case then we will discuss the action needed to me make XTX invertible
(basically removing columns in the design matrix). Cases where one for some
reason insist (which may be relevant) on a design matrix where XTX is not
invertible will not be discussed here.

We give the proof of Theorem 9.24 below

Proof

When we want to find the minimum of RSS, we need to differentiate RSS with re-
spect to the parameters (β). To that end we write RSS as a quadratic form

RSS(β) = YTY + βTXTXβ− βTXTY − YTXβ, (9-91)

since YTXβ is a scalar we have YTXβ = (YTXβ)T = βTXTY and hence

RSS(β) = YTY + βTXTXβ− 2βTXTY , (9-92)
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and find the derivative wrt. β can be found as

∇RSS(β) =
∂RSS

∂β
= (XTX + (XTX)T)β− 2XTY

= 2XTXβ− 2XTY ,
(9-93)

setting ∇RSS(β) = 0 and solving for β gives

β̂ = (XTX)−1XTY , (9-94)

taking the expectation of β̂ we get

E[β̂] = E[(XTX)−1XTY ]

= (XTX)−1XT E[Xβ + ε]

= (XTX)−1XTXβ

= β.

(9-95)

Hence β̂ is a central estimator for β. The variance of the parameter estimator is given
by

V[β̂] = V[(XTX)−1XTY ]

= (XTX)−1XT V[Xβ + ε]X(XTX)−T

= (XTX)−1XT(V[Xβ] + V[ε])X(XTX)−T

= (XTX)−1XTσ2IX(XTX)−T

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1.

(9-96)

�

For any reasonable design matrices this imply that V[β̂] → 0 as the number of
observation go to infinity, implying that the estimator is consistent.

Definition 9.25 Orthogonal parametrization

A parametrization is called orthogonal if (XTX)ij = 0 for i 6= j.

An orthogonal parametrization imply that the covariance between parameters
is zero. We will see later on in this chapter that the same model can be parame-
terized in different, but equivalent ways, implying that different design matri-
ces may be associated with the same model. Orthogonal design is (given ev-
erything equal) preferable as changes in one parameter does not changes other



Chapter 9 9.5 THE GENERAL LINEAR MODEL 365

parameters. Also one way of dealing with multicollinarity is orthogonalization
of the desing matrix.

9.5.1 Estimators or estimates

In the derivations above we have considered the observation as a random vari-
ables (and hence used Y), and in that setting β̂ is also a random variable. When
we have actual observation of the system we denote the observation by y (this
not a random vector) and then β̂ = (XTX)−1XTy is also a vector of actual num-
bers (not a random vector) that is refereed to as an estimate.

In the following we will need both interpretations of β̂, but it should be clear
from the context which we are referring to. In general we can say that what we
actually observe are estimates, but when constructing appropriate test statistic
we consider the estimator. For example the distribution used in the partial t-
test is derived using the estimator, β̂, while when we calculate the test statistic
in a specific problem (which is used for calculating a p-value or compared to a
critical value), we use the estimate β̂.

9.5.2 Geometric interpretation of the general linear model (LM)

The estimator/estimate β̂ define an orthogonal projection of the observations
into the space of fitted values, which is defined by the design matrix X. Using
the parameter estimate β̂ we can write the fitted values as

ŷ =X β̂

=X(XTX)−1XTY = Hy,
(9-97)

where the matrix H is defined by the design matrix 2. The observed residuals
can be written as

r = y− ŷ, (9-98)

in which case the residuals are observed numbers or we can write

r = Y − Ŷ , (9-99)

with Ŷ = HY , in which case r is a random vector, both Y and Ŷ follow a
multivariate normal distribution (we will get back to the mean and variance-
covariance of those). Many results apply regardless of the interpretation of r,

2H is often referred to as the “hat”-matrix, as it puts a hat on Y
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the exception is of course results related to resulting distributions, which only
apply for the random variable interpretation.

The matrix H = X(XTX)−1XT is an orthogonal projection matrix (see Defini-
tion 9.21) as

HT =(X(XTX)−1XT)T

=X(XTX)−1XT = H

H2 =X(XTX)−1XTX(XTX)−1XT

=X(XTX)−1XT = H.

(9-100)

The observed residuals of the model can be written as

r = Y − Ŷ = (I − H)Y , (9-101)

the matrix I − H is also an orthogonal projection matrix, and further the resid-
uals and the fitted values are orthogonal

rTŶ =YT(I − H)HY

= YT(H − H)Y = 0.
(9-102)

The dimension of the linear subspace defined by the column space of X ∈ Rn×p

is of course p and further the trace of H is equal p, as we can write (using
Theorem 9.5)

Trace(H) =Trace(X(XTX)−1XT)

=Trace((XTX)−1XTX)

=Trace(Ip) = p.

(9-103)

Hence the dimension of the linear subspace defined by the design matrix X is p
and further

Trace(I − H) = Trace(I)− Trace(H) = n− p. (9-104)

Two models (defined by their design matrices) are equivalent if the resulting
orthogonal projection matrices are equal, i.e. if

H1 = X1(XT
1 X1)

−1XT
1 = X2(XT

2 X2)
−1XT

2 = H2. (9-105)

Hence a model depend in the projection matrix not on the particular parametriza-
tion. We will see examples of this in the next section, where we formulate the
first statistical models/methods as LMs.
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In statistical models the projections are usually from high dimensional space (n
is usually way larger than 3), and hence difficult to illustrate graphically, the
following simple example can hopefully illustrate the projection principle in an
simple example.

Example 9.26 Items on a balance

Two items A and B are weighted on a balance, first separately then together, giving
the observations y1, y2, y3, and the model

Y1 =βA + ε1

Y2 =βB + ε2

Y3 =βA + βB + ε3

(9-106)

with εi ∼ N(0, σ2). βA is the weight of item A and βB is the weight of item B.

Or in matrix notation

Y =




1 0
0 1
1 1



[

βA
βB

]
+ ε = Xβ + ε (9-107)

with ε ∼ N(0, σ2I). Hence

β̂ =(XTX)−1XTy =
1
3

[
2 −1 1
−1 2 1

]
y (9-108)

and

ŷ =X(XTX)−1XTy =
1
3




2 −1 1
−1 2 1
1 1 2


 y = Hy (9-109)

The projection H defines a 2-dimensional surface in R3. In the plot below the “blue”
surface define the 2 dimensional surface into which any point is projected, the exact
location on the surface is determined by the actual observation, as illustrated in the
plot. Further the plot illustrate a norm interpretation of the projection.

To highlight the geometric interpretation the usual norm of the vectors are also in-
dicated in the plot.
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‖ŷ‖
‖y‖

‖y− ŷ‖

The example highlight the geometric interpretation of the projections, in the
example we have

• Norm of the observations

||y|| =
√

n

∑
i=1

y2
i =

√
yTy (9-110)

• Norm of fitted values

||ŷ|| =
√

n

∑
i=1

ŷ2
i =

√
yT Hy (9-111)

• Norm of residuals

||y− ŷ|| =
√

n

∑
i=1

(yi − ŷi)2 =
√

yT(I − H)y (9-112)

and further as ŷ and r = y− ŷ are orthogonal it follows (Pythagoras) that

||y||2 = ||ŷ||2 + ||y− ŷ||2 (9-113)
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intuitively we would argue that the data is well explained by the model if ||ŷ||2
is large compared to ||y − ŷ||2. When we develop tests in the following it is
based on ratios between squared norms of orthogonal projections.

9.6 One-sample t-test as a LM

The one-sample t-test can be written as a general linear model with X = 1, i.e.
a vector of ones, the orthogonal projection matrix is in this case given by

H =
1
n

E, (9-114)

where Eij = 1 for all (i, j) and Trace(H) = 1 hence the dimension of the model
is 1. The model can be written in the form Y ∼ N(1µ, σ2I), and then following
corollary to Cochran’s theorem apply

Corollary 9.27 One-sample t-test as a projection

If Y ∼ N(1µ, σ2I) then the partitioning of variation can be written as

YTY = YT HY + YT(I − H)Y , (9-115)

and, regardless of the value of µ, then

1
σ2 YT(I − H)Y ∼χ2(n− 1). (9-116)

further if µ = 0 then

1
σ2 YT HY ∼χ2(1). (9-117)

Implying that if µ = 0 then

F =
1

σ2 YT HY/1
1

σ2 YT(I − H)Y/(n− 1)
=

YT HY
YT(I − H)Y/(n− 1)

∼ F(1, n− 1).

(9-118)

which can be used to test the null-hypothesis µ = 0.
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Proof

First note that 1
σ2 (Y − 1µ) ∼ N(0, I) (no matter the value of µ), and hence

1
σ2 (Y − 1µ)T(Y − 1µ) =

1
σ2 (Y − 1µ)T H(Y − 1µ) +

1
σ2 (Y − 1µ)T(I − H)(Y − 1µ),

and in light of Cochran’s Theorem we have that

1
σ2 (Y

T − 1µ)H(Y − 1µ) ∼χ2(1)

1
σ2 (Y − 1µ)T(I − H)(Y − 1µ) ∼χ2(n− 1).

(9-119)

now consider the second term, the claim is that

(Y − 1µ)T(I − H)(Y − 1µ) = YT(I − H)Y (9-120)

for any choice of µ ∈ R,

(Y − 1µ)T(I − H)(Y − 1µ) =YT(I − H)Y − YT(I − H)1µ

−µ1T(I − H)Y + µ1T(I − H)1µ
(9-121)

now with H = 1(1T1)−11T we have 1T H = 1T1(1T1)−11T = 1T, and of course also
H1 = 1, and hence

1
σ2 (Y − 1µ)T(I − H)(Y − 1µ) =

1
σ2 YT(I − H)Y . (9-122)

Finally, it is clear that if µ = 0 then (YT − 1µ)H(Y − 1µ) = YT HY . And the proof is
completed by comparing to definition of the F-distribution (see Theorem 2.96)

�

In Chapter 3 we saw that the test statistics should be compared to a t-distribution
with n− 1 degrees of freedom. If t ∼ t(n− 1) then t2 ∼ F(1, n− 1) and hence
the results are equivalent.

In the construction above 1
σ2 YT HY ∼ χ2(1) is valid as long as the null-hypothesis

and the model assumption is correct, while 1
σ2 YT(I− H)Y ∼ χ2(n− 1) holds as

long as the model assumption are correct and a central estimator for σ2 can be
found by considering the expectation

E
[

1
σ2 YT(I − H)Y

]
= (n− 1) (9-123)

or
1

(n− 1)
E
[
YT(I − H)Y

]
= σ2 (9-124)
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and a central estimator for σ2 is

σ̂2 =
1

n− 1
YT(I − H)Y =

1
n− 1

n

∑
i=1

(Yi − Ȳ)2, (9-125)

hence the usual and well known variance estimator.

9.6.1 Assumptions and how to check them

The assumption in the general linear model is that ε ∼ N(0, σ2I), i.e.

1. εi is normal

2. V[εi] is constant (i.e. does not depend on i)

3. Cor[εi, εj] = 0 for all (i, j), implying independence

we do not actually observe εi but rather we observe

r = (I − H)Y ∼ N(0, σ2(I − H)) (9-126)

and conclusions on the residuals will be based on ri rather than εi. For the sim-
ple case we consider in this section the first two assumptions apply also to ri as
ri ∼ N(0, σ2(1− hii)) and hii =

1
n , is independent of i (note this does not apply

to the general case). Also it is clear that strictly speaking the third assumption
is not fulfilled for the observed residuals as Cor[ri, rj] = − 1

n−1 (see Exercise
7), however the independence assumption is in general hard (or impossible) to
check, we treat will an exception below.

9.6.2 Checking lag-1 autocorrelation

A notable case where independence can be checked is when the observations
are taken with a clear ordering (typically in time), in this case the correlation
between residuals should be checked. There is a extended theory on models
that model correlation structures in time (time series analysis), which we will
not treat here. We will however stress that the independence assumption should
be checked for time series data, a simple check is to calculate the lag 1 auto-
correlation (to stress the time dependence we have replaced i by t)

ρt(1) =
Cov[εt, εt+1]√
V[εt]V[εt+1]

, (9-127)
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assuming the correlation and variance in constant (independent of t), we can
write

ρ(1) =
Cov[εt, εt+1]

V[εt]
, (9-128)

and again since we only observe rt we will have to base the inference on rt, i.e.
the estimator (note that r̄ = 0)

ρ̂(1) =
∑n−1

t=1 rtrt+1

∑n
t=1 r2

t
, . (9-129)

We will not go in details of this estimator, just mention that under the hypoth-
esis that Cov[εt, εt+1] = 0 then asymptotically (i.e n large), ρ̂(1) ∼ N(0, 1/n)
(see Exercise 8). And hence the lag 1 auto-correlation can be compared to that
distribution, in practice this imply that we test the hypothesis

H0 : ρ(1) = 0 (9-130)

by comparing the estimated lag 1 auto correlation (ρ̂(1)) to a quantile (usually
the 0.975 quantile) of normal distribution with mean 0 and standard deviation
1/
√

n.

9.7 Encoding

A LM is invariant to linear transformations of the design matrix, more specifi-
cally if

X2 = X1T (9-131)

such that T−1 exist then

H2 =X2(XT
2 X2)

−1XT
2

=X1T(TTXT
1 X1T)−1TTXT

1

=X1TT−1(XT
1 X1)

−1T−TTTXT
1

=X1(XT
1 X1)

−1XT
1 = H1.

(9-132)

Hence the two model defined by X1 and X2 are equivalent and we refer to dif-
ferent parametrizations (defined by T) as encoding.
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Example 9.28

Say we want to estimate the average height of males (25-50 years) based the data-set
presented in Example 9.1. We can do that by considering the model

Y = Xµ + ε; ε ∼ Nn(0, σ2I), (9-133)

with X = 1, the unit of µ will be the same as data (here cm). The projection matrix
is given by

H =
1
n

11T. (9-134)

Now let’s say that we insist on having the parameter (µ) given in meters (µm =

µcm/100) we can write the model as

Y =Xµm100 + ε

=Xmµm + ε; ε ∼ Nn(0, σ2I),
(9-135)

with Xm = 100 · 1 and in this case we get

Hm = Xm(XT
mXm)

−1XT
m =

1002

n1002 11T =
1
n

11T = Hcm. (9-136)

9.8 Two sample t-test as a LM

The two sample t-test (assuming equal variance in the two groups) can be de-
fined by the design matrix

X =




1 0
...

...
1 0
0 1
...

...
0 1




=

[
1n1 0n1

0n2 1n2

]
, (9-137)

in which case β = [µ1, µ2]
T. A more common parametrization of the design

matrix is

X2 =

[
1n1 0n1

1n2 1n2

]
, (9-138)

in which case β = [µ1, µ2 − µ1]
T. The two models are equivalent since

X
[

1 0
1 1

]
= XT = X2. (9-139)
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The usual null hypothesis (µ1 = µ2 = µ) have the design matrix

X0 = 1. (9-140)

The main result of this section is collected in the next corollary.

Corollary 9.29 Two-sample t-test as a projection

If Y ∼ N(Xβ, σ2I), with X as in (9-137) (or any other equivalent
parametrization e.g. (9-138)) then the orthogonal partitioning of variation
can be written as

YTY = YT H0Y + YT(H1 − H0)Y + YT(I − H1)Y , (9-141)

where H1 is based on (9-137) and H0 is based on (9-140). Regardless of the
value of β, then

1
σ2 YT(I − H1)Y ∼χ2(n− 2) (9-142)

further if µ1 = µ2 (corresponding to β2 = 0 in (9-138)) then

1
σ2 YT(H1 − H0)Y ∼χ2(1). (9-143)

and if µ1 = µ2 = 0 (corresponding to β1 = β2 = 0) then

1
σ2 YT H0Y ∼χ2(1). (9-144)

Implying that if µ1 = µ2 then

F1 =
1

σ2 YT(H1 − H0)Y/1
1

σ2 YT(I − H1)Y/(n− 2)
=

YT(H1 − H0)Y
YT(I − H1)Y/(n− 2)

∼ F(1, n− 2),

(9-145)

and if further µ1 = µ2 = 0 then

F0 =
1

σ2 YT H0Y/1
1

σ2 YT(I − H1)Y/(n− 2)
=

YT H0Y
YT(I − H1)Y/(n− 2)

∼ F(1, n− 2).

(9-146)
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Proof

The proof follow the same steps as the proof of Corollary 9.27, i.e. use that Z =
1
σ (Y − Xβ) ∼ N(0, I), and write the partitioning of variation in terms of Z. The
details are left to the reader as Exercise 10.

�

It follows from Cochran’s Theorem (Theorem 9.23) that YT(H1 − H0)Y and
YT(I−H1)Y are independent (see Exercise 11), and as a consequence that (µ̂0 =
H0Y , µ̂1 = H1Y)

• µ̂0 and µ̂1 − µ̂0 are independent

• µ̂0 and Y − µ̂1 are independent

• µ̂1 − µ̂0 and Y − µ̂1 are independent

where µ̂i = HiY are the fitted values based on the projection Hi.

The result is in line with the results in Chapter 3, where we found the test-
statistics t to be t(n− 2)-distributed under the null hypothesis, and in that case
t2 ∼ F(1, n− 2). Further a central estimator for σ2 is

Corollary 9.30 Variance estimator

With Y and the projections as in Corollary 9.29, then a central estimator for
σ̂2 is

σ̂2 =
YT(I − H1)Y

n− 2
, (9-147)

the estimator is equal the pooled variance estimator presented in Example
2.85, furthermore the variance of the estimator is

V[σ̂2] =
2σ2

n− 2
. (9-148)
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Proof

The proof follow directly from Corollary 9.29, but see Exercise 12 for more details.

�

In light of the two corollaries (9.27 and 9.29) it is clear that the test statistics are
constructed by comparing variance estimators, that are valid under different
assumptions (hypothesis). The estimator in Corollary 9.30 is valid no matter
what the mean value in each group is (but assuming equal variance in the two
groups), while the estimation that could be constructed considering (9-143) or
(9-144) are only valid under specific hypothesis (µ1 = µ2 or µ1 = µ2 = 0).

9.8.1 Interpretation of parameters

The two encoding (9-137) and (9-138) result in different interpretation of the
estimated parameters. In the case (9-137) the parameters is the group means and
confidence intervals for the parameters are confidence intervals for the mean in
each group under the assumption of equal variance in the two groups. In the
encoding (9-138) the second parameter is the difference in group means and
a confidence interval for the second parameter is a confidence interval for the
difference in group means, again under the assumption of equal variance in the
two groups. See Exercise 15 for an other example of a parametrization.

9.9 Successive testing and partitioning of variation

The discussion of projections and Cochran’s theorem suggest that we can for-
mulate a series of nested hypothesis. Nested imply that simpler models are
included in the more complicated models by fixing some parameters to spe-
cific values (usually zero). The partitioning of variation can be done in different
ways, usually referred to as Type I, II and III, for the setup we consider here the
relevant once are I, and III.
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9.9.1 Type I partitioning of variation

Formally if hypothesis Hi belong to a linear subspace of Rn of dimension pi, we
can write

H0 ⊂ H1 ⊂ · · · ⊂ HM ⊂ Rn (9-149)

in practice this is usually realized by adding columns to the design matrix, and
an example is

X0 =1
X1 =[1 X̃1]

...
Xi =[Xi−1 X̃i]

...
XM =[XM−1 X̃M],

(9-150)

each design matrix, Xi, result in the projection matrix Hi,

Hi = Xi(XT
i Xi)

−1XT
i , (9-151)

and the residual variation is estimated by the projection matrix I−HM. We note
here that the results we present here are about projection matrices not the spe-
cific parametrization of the design matrix, the construction (9-150) is however a
useful way of making projections concrete.

Now define

SS0 =YT H0Y ;

SSi =YT(Hi − Hi−1)Y ; i = {1, ..., M}
SSE =YT(I − HM)Y ;

(9-152)

the dimension for each level is

d f0 =Trace(H0)

d fi =Trace(Hi)− Trace(Hi−1); i = {1, ..., M}
d fSSE =n− Trace(HM).

(9-153)

If Xi ∈ Rn×pi , then d fi = pi − pi−1 (and X̃i ∈ Rn×d fi). From a statistical test
perspective we have

Fi =
SSi/d fi

SSE/d fSSE
∼ F(d fi, d fSSE), (9-154)
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and statistical test can be based on the partitioning presented here. The parti-
tioning is called Type I partitioning of the variation and the test is conditioning
on the higher sources being zero. So for example Fi is conditioning on X̃j not
being included in the model for j > i. Formally we collect the results in the
following theorem

Theorem 9.31 Type I partioning and tests

If Y ∼ N(XMβ, σ2I), with XM as in (9-150), Hi as in (9-151), and β =
[β0, β̃T

1 , ..., β̃T
M]T, with β̃i parameters corresponding to X̃i. Then the orthog-

onal partitioning of variation can be written as

YTY = YT H0Y +
M

∑
i=1

YT(Hi − Hi−1)Y + YT(I − HM)Y , (9-155)

and, regardless of the value of β, then

1
σ2 YT(I − HM)Y ∼χ2(n− pM), (9-156)

further if β̃ j = 0, for j > i then

1
σ2 YT(Hj − Hj−1)Y ∼χ2(d f j); for all j > i. (9-157)

Implying that

Fj =
1

σ2 YT(Hj − Hj−1)Y/d f j
1

σ2 YT(I − HM)Y/d fSSE
=

YT(Hj − Hj−1)Y/d f j

YT(I − HM)Y/d fSSE
∼ F(1, d f j), (9-158)

for j > i.
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Proof

We start by (9-156); first note that

1
σ
(Y − XMβ) ∼ N(0, I), (9-159)

and hence 1
σ2 (Y − XMβ)T(Y − XMβ) ∼ χ2(n). In light of Cochran’s Theorem we

have

1
σ2 (Y − XMβ)T(Y − XMβ) =

1
σ2 (Y − XMβ)T HM(Y − XMβ)+

1
σ2 (Y − XMβ)T(I − HM)(Y − XMβ),

(9-160)

the two terms on the rhs follow independent χ2-distributions with pm and n − pm

degrees of freedom, respectively. Hence the first claim in the theorem is that

(Y − XMβ)T(I − HM)(Y − XMβ) = YT(I − HM)Y , (9-161)

which is true as XT
M HM = XT

MXM(XT
MXM)−1XT

M = XT
M. For the claims in (9-157), it

correspond to

(Y − XMβ)T(Hj − Hj−1)(Y − XMβ) = YT(Hj − Hj−1)Y (9-162)

when β̃ j = 0 for j > i, and using the notation βi = [β0, β̃T
1 , ..., β̃T

i ]
T we can write

(9-162) as

(Y − Xiβi)
T(Hj − Hj−1)(Y − Xiβi) = YT(Hj − Hj−1)Y (9-163)

and since XT
i Hj = XT

i for j > i (see Exercise 14) the proof is done.

�

The results are often collected in an analysis of variance (ANOVA) table as in
Table 9.1, usually the hypothesis H0 is that all observation have the same mean
value (Yi ∼ N(µ, σ2) and iid.), and also in the test setup it is assumed that the
model HM is sufficient, in the sense that the residual under that model are iid.
normally distributed with zero mean. The mean sum of squares are all central
estimators of the variance under the hypothesis of no effect (see Exercise 13).

In Type I partitioning of variation the total variation can be written as

YTY =
M

∑
i=0

SSi + SSE. (9-164)

In the Type I partitioning of variation the order in which variable enter the
model in general matters, as the test statistics are conditioning on the previ-
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Source of variation df Sum of Squares Mean SS F-statistics
H0 d f0 SS0

SS0
d f0

SS0/d f0
SSE/d fSSE

H1 d f1 SS1
SS1
d f1

SS1/d f1
SSE/d fSSE

...
...

...
...

...

HM d fM SSM
SSM
d fM

SSM/d fM
SSE/d fSSE

Residual d fSSE SSE SSE
d fSSE

Table 9.1: Partitioning of variation and resulting test statistics.

ous null-hypothesis already being accepted. For exploratory data analysis and
testing the Type III partitioning of variation is therefore often preferred.

Example 9.32 Items on a scale

We continue the example with items on a scale, again two items are put on scale
and weighted first separately then together. In this example we assume that the
recorded values are differences to a nominal value, hence the null hypothesis is that
the expected difference is zero for both item. There is in this case a fairly obvious
hierarchy of hypothesis: H0 : µ1 = µ2 = 0, H1 : µ1 = µ2 = µ and the full model
HM that allow different expected values for the two items (which is also assumed to
be sufficient). In this case the design matrices could be

X1 =




1
1
2


 ; XM =




1 0
0 1
1 1


 (9-165)

and for the null hypothesis there would be no design matrix as the mean value of
both items is zero.

The projections are illustrated in the plot below.



Chapter 9 9.9 SUCCESSIVE TESTING AND PARTITIONING OF VARIATION381

0 2 4 6 8 10

0
5

10
15

20

0

2

4

6

8

10

y1

y 2

y 3

y ŷM
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‖ŷ1‖

From a geometric point of view the norms can be divided into (again using orthog-
onality)

||y||2 = ||yM||2 + ||y− yM||2, (9-166)

and further the norm of ŷM can be described as

||ŷM||2 = ||ŷ1||2 + ||ŷM − ŷ1||2, (9-167)

and combining we get

||y||2 = ||ŷ1||2 + ||ŷM − ŷ1||2 + ||y− yM||2. (9-168)

When testing the described hypothesis’s we compare these norms. It seems reason-
able that if the expected value of the two item are different then ||ŷ1 − ŷM||2 is large
and also if the expected value of the items is not zero then ||ŷ1||2 is large. The magni-
tude is evaluated relative to the variation of residuals (||y− yM||2), with the precise
statements given by the described F-tests. In the presented case the magnitude of
||ŷ1 − ŷM|| seems small while ||ŷ1|| is large compared to ||y− yM||, but the precise
statement should be based on statistical tests.
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The example above illustrate the geometric interpretation of the developed test-
statistics.

9.9.2 Type III partitioning of variation

In the Type III partitioning of variation every effect is tested in the setting of the
Type I, but formulated as if the effects entered last in the model, i.e. start with
the design matrix

XM =[1 X̃1 · · · X̃M], (9-169)

and the design matrix for testing level i is

X−i =[1 X̃1 · · · X̃i−1 X̃i+1 · · · X̃M], (9-170)

and the projection is written in a similar way as the Type I partitioning, i.e.

HM =XM(XT
MXM)−1XT

M

H−i =X−i(XT
−iX−i)

−1XT
−i,

(9-171)

and the partitioning of variation is

YTY = YT H−iY + YT(HM − H−i)Y + YT(I − HM)Y , (9-172)

there will be M (or M + 1 if the intercept is included) of those. The result is
collected in the theorem below
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Theorem 9.33 Type III partioning and test

If Y ∼ N(XMβ, σ2I), with XM as in (9-169), H−i as in (9-171), and β =
[β0, β̃T

1 , ..., β̃T
M]T, with β̃i parameters corresponding to X̃i. Then the orthog-

onal partitioning of variation can be written as

YTY = YT H−iY + YT(HM − H−i)Y + YT(I − HM)Y , (9-173)

and, regardless of the value of β, then (with p = Rank(HM))

1
σ2 YT(I − HM)Y ∼χ2(n− p) (9-174)

further if β̃i = 0, then (with pi = Rank(H−i))

1
σ2 YT(HM − H−i)Y ∼χ2(p− pi). (9-175)

Implying that if β̃i = 0, then

Fi =
YT(HM − H−i)Y/(p− pi)

YT(I − HM)Y/(n− p)
∼ F(p− pi, n− p). (9-176)

Proof

Follow the steps in the proof of Theorem 9.31.

�

The Type III partitioning is often presented in a table similar to Table 9.1, with

SSi = YT(HM − H−i)Y (9-177)

and the mean sum of squares in a similar way. However due to the construction
of the sum of squares, the individual sum of squares does not sum up to the total
sum of squares.

9.9.3 Variance estimator

Having estimated the mean value parameters, we also need an estimator for the
variance, given the discussion above, the answer is quite straight forward, and
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given in the theorem below

Corollary 9.34 Variance estimator

Provided that the model under HM is sufficient then

σ̂2 =
YT(I − HM)Y

d fSSE
(9-178)

with d fSSE = n− Trace(HM), is a central estimator for σ2, and further

d fSSEσ̂2

σ2 ∼ χ2(d fSSE). (9-179)

Proof

Follow directly from Theorem 9.31 and 9.33

�

One might re-calibrate the variance estimator, using a reduced model, meaning
that we replace HM by Hi for some i as identified by the model reduction.

9.9.4 Type I or Type III?

An obvious question might of course be if there is a Type II partitioning of vari-
ation, and there is. The Type II partitioning, is however related to models that
include interactions (or polynomials), and we will skip that for now, but give
some comments to how to perform model reduction.

Using the notation of Equation (9-150), and SS(X1|X2) meaning the sum of
square contribution related to X1 when we have already controlled for X2, then
the Type I partitioning correspond to a sequential test, testing for the signifi-
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cance of

SS(X̃1|X0)

SS(X̃2|X1)

...
SS(X̃M|XM−1),

(9-180)

hence in each test we condition on (or control for) all preceding levels (effects).
The Type III partitioning correspond to controlling for all other levels (effects)

SS(X̃1|X0, X̃2, ..., X̃M)

SS(X̃2|X1, X̃3, ..., X̃M)

SS(X̃3|X2, X̃4, ..., X̃M)

...
SS(X̃M|XM−1).

(9-181)

Hence we see that the two partitioning will agree for the last effect, but may
differ for all other effects. Even though there are situations where the Type I
partitioning is relevant, we recommend the Type III partitioning, in some of the
situation covered here the two partitioning actually agree for all levels.

9.10 Simple and multiple linear regression as a LM

The simple linear regression problem can be formulated in vector-matrix nota-
tion as or




Y1
...

Yn


 =




1 x1
...

...
1 xn



[

β0
β1

]
+




ε1
...

εn


 , εi ∼ N(0, σ2)

=Xβ + ε ∼ N(0, σ2I)

(9-182)

hence directly in the notation of the general linear model, and all the results
we have seen so far apply here. Further it is straight forward to generalize the
result to multiple linear regression




Y1
...

Yn


 =




1 x11 · · · xp1
...

...
...

1 x1n · · · xpn







β0
...

βp


+




ε1
...

εn


 , εi ∼ N(0, σ2)

=Xβ + ε ∼ N(0, σ2I),

(9-183)

hence again in the notation of the general linear model and the results related
to test for model reduction (Type I or III) also apply here and also the central
estimator for the variance apply.
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The standard error of the parameter estimates are constructed from the variance-
covariance matrix

Σ̂β = σ̂2(XTX)−1. (9-184)

In summaries (from statistical software) results from a multiple linear regres-
sion model usually present the partial t-test (H0 : βi = βi,0), the general con-
structed is

β̂i − βi,0√
(Σ̂β)ii

∼ t(n− 2), (9-185)

and p-values are usually reported for βi,0 = 0, the partial t-test correspond to a
specific Type III partitioning.

Theorem 9.35 Partial t-test and Type III partitioning of variation

The partial t-test for the hypothesis βi,0 = 0 and the Type III ANOVA test
are equivalent in the sense that is if X̃i is a vector then

t2
obs,i = Fi (9-186)

where Fi is the F-test statistics using the Type III partitioning, and both test
statistics should be compared to an F-distribution with 1 and n− 1 degrees
of freedom.

Proof

Without loss of generality we can set X̃ = [X v] ∈ Rn×p and use Lemma 9.6 to
write tobs as

tobs =
β̂p

σ̂/
√

k
, (9-187)

with k as in Corollary 9.7 and hence we have

t2
obs =

β̂2
p

σ̂2/k
. (9-188)

Type III F-test can be written as

Fp =
Y(H̃ − H)Y

Y(I − H)Y/(n− p)
=

Y(H̃ − H)Y
σ̂2 (9-189)
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also, using Corollary 9.7, we have

H̃ − H =
1
k
(HvvT H − vvT H − vvT H + vvT). (9-190)

Now we rewrite β̂p in terms of H and v, with A = (XTX)−1, we have

β̂ =(X̃TX̃)−1X̃TY

=

[
A + AXTvvT X A

k
−AXTv

k
−vT X A

k
1
k

] [
XT

vT

]
Y

=

[
AXT + AXTvvT H

k − AXTvvT

k
− vT H

k + vT

k

]
Y ,

(9-191)

and therefore

β̂p =
vT

k
(I − H)Y (9-192)

and since β̂p is a scalar (β̂2
p = β̂T

p β̂p) we can write

β̂2
p =

1
k2 YT (I − H) vvT (I − H)Y , (9-193)

and hence

t2
obs =

1
k YT (I − H) vvT (I − H)Y

σ̂2 (9-194)

and using (9-190) we get

1
k
(I − H) vvT (I − H) =

1
k

(
vvT − HvvT − vvT H + HvvT H

)
= H̃ − H (9-195)

we have shown that Fp = t2
obs and the proof is completed.

�

Test for total homogeneity

Often a test for total homogeneity will be reported along with the partial t-test
a discussed above, referring to (9-183) this correspond to the test

β1 = · · · = βp = 0 (9-196)

against the alternative that at least one variable have a significant effect (i.e.
reduce the sum of squares) in the output.
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Example 9.36 Temperature anomali

As an example we look at the so-called global temperature anomali, which is defined
as the global average temperature of a year minus the average global temperature
over the period 1900-2000. In the data the period covered is 1850-2023. The result of
a simple linear regression model is given below.

fitTemp = smf.ols('Anomaly ~ Year',data = GlobalTemp).fit()
fitTemp.summary(slim=True)

<class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Anomaly R-squared: 0.605
Model: OLS Adj. R-squared: 0.603
No. Observations: 174 F-statistic: 263.2
Covariance Type: nonrobust Prob (F-statistic): 1.65e-36
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -12.0355 0.745 -16.146 0.000 -13.507 -10.564
Year 0.0062 0.000 16.224 0.000 0.005 0.007
==============================================================================

"""

From the summary it is clear that there is a significant increase of temperature, ac-
cording to the model the increase is around 0.0062 degrees per year. We will get back
to the validity of the model in the following sections. The p-values for intercept and
slope are both reported as 0 (of course it just mean that the are very small). The test
statistics for total homogeneity is 263.2, since this is a simple linear regression model
is equals the squared rest statistics for the slope (16.2242 = 263.2), and in this case
the numerical value of the p-value is actually given (1.65 · 10−36).

9.10.1 Linear transformation of regressors (input)

The LM is invariant to linear transformation of the design matrix, suppose for
example that we have collected some output under different temperature con-
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ditions, and hence hat the design matrix

XC = [1 t], (9-197)

where t is a collection of temperature measurements (measured in degrees Cel-
sius) and associated with some outcome to be modeled, someone now ask for
the same model but with temperature given in degrees Fahrenheit, i.e. the de-
sign matrix

XF = [1 f ], (9-198)

where f is the temperatures measured in degrees Fahrenheit, the conversion is

fi = 32 + 1.8ti, (9-199)

and hence we can write

XF = XC

[
1 32
0 1.8

]
. (9-200)

Hence the models are equivalent as long as the intercept is included. This prop-
erty (that model are invariant to linear transformations) is also the reason that
it is usually not recommended to remove the intercept in model selection steps,
and in the above example the models would not be equivalent if the intercept
would have been removed as part of a model selection procedure.

Example 9.37 Temperature anomali

In the temperature example above it seems reasonable to use either the mid-point
of the years ((1850 + 2023)/2 = 1936), or the the midpoint of the reference period
(1950) as reference. If we denote that point (i.e. either 1936 or 1950) as xre f , then the
transformation matrix would be

Xre f = X
[

1 −xre f
0 1

]
, (9-201)

here X is a matrix with the first column a vector of ones and the second column a
vector with the years. If xre f = 1936 then the parametrization is orthogonal and
otherwise it is not.

9.10.2 Residual analysis

Even though the raw residuals

r = Y − Ŷ = Y − HY (9-202)
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are often used for residual analysis, it is more common to use some standard-
ized version. First we note that even though the residual errors (εi) are iid. with
constant variance, then the observed residuals are not. The distribution of the
observed residuals is

r ∼ N(0, σ2(I − H)) (9-203)

and hence V[ri] = σ2(1− hii) where hii is the i’th diagonal element of H. In that
light it is natural to define standardized residuals

Definition 9.38 Standardized residualsa

Standardized residuals are defined as

rrs
i =

ri

σ̂
√

1− hii
. (9-204)

aStandardized residuals are sometimes (e.g. in some Python packages) referred to as
internally Studentized residuals.

The standardized residuals are widely used and have the advantage that the
variance is constant (V[rrs

i ] = V[rrs
j ]), for all (i, j) if the model assumption is

correct. Hence the standardized residuals are well suited for assessing the as-
sumption of variance homogeneity, however the enumerator and denominator
are not independent, this imply that the standardized residuals have a very
complicated distribution, and hence for more precise assessment the Studen-
tized residuals are often used

Definition 9.39 Studentized residuals

Studentized residuals are defined as

rrt
i =

ri

σ̂(i)
√

1− hii
, (9-205)

where σ̂2
(i) is the estimate of the variance, excluding the i’th observation.

One advantage of the Studentized residuals is that normalization factor is not
inflated by large values of ri, which may be a problem in the standardized ver-
sion. Further the distribution of the Studentized residuals is simpler.
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Theorem 9.40 Distribution of studentized residuals

ri and σ̂2
(i) are independent and

rrt
i ∼ t(n− p− 1). (9-206)

Proof

We have already established that n−p−1
σ2 σ̂2

(i) ∼ χ2(n − p − 1) and further from the
discussion in this section we also have that ri

σ
√

1−hii
∼ N(0, 1), and also

ri
σ
√

1−hii√
n−p−1

σ2 σ̂2
(i)

1
n−p−1

=
ri

σ̂(i)
√

1− hii
= rrt

i , (9-207)

hence if ri and σ̂(i) are independent then the proof is done. To that end it is enough
to show that ri and (I − H)Y−i are independent.

For the independence we denote a specific row (i) of a matrix by Ai,·, and also all
rows except row i by A−i,·. With this we can write

ri =(I − H)i,·Y = Yi − Hi,·Y

σ̂2
(i) =YT

−i(I − H̃)Y−i,
(9-208)

where H̃ is the projection matrix for the model excluding the i’th observation. Hence
it suffice to show that the covariance between ri and (I − H̃)Y−1 is zero

Cov[ri, (I − H̃)Y−i] =Cov[Yi, (I − H̃)Y−i]− Cov[Hi,·Y , (I − H̃)Y−i]

=0− Hi,·Cov[Y , Y−i](I − H̃),
(9-209)

now note that we can write Y−i as I−i,·Y , and since IT
−i,· = I·,−i, we have

Cov[ri, (I − H̃)Y−i] =− Hi,· I·,−i(I − H̃)

=− Hi,−i(I − H̃).
(9-210)

Hence we need to show that Hi,−i = Hi,−i H̃, for that purpose write the two matrices

Hi,−i =Xi,·(XTX)−1XT
−i,·

H̃ =X−i,·(XT
−i,·X−i,·)−1XT

−i,·,
(9-211)

and form the product

Hi,−i H̃ =Xi,·(XTX)−1XT
−i,·X−i,·(XT

−i,·X−i,·)−1XT
−i,·

=Xi,·(XTX)−1XT
−i,· = Hi,−i,

(9-212)

which complete the proof.

�
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From the definition it seems that one would have to re-estimate the model n
times in order to find the Studentized residuals, there does however exist solu-
tions for calculating the Studentized residual directly from the standardized (or
raw) residuals allowing fast computation.

Example 9.41 Temperature anomali

The standardized and Studentized residuals can be calculated in Python by

n = len(GlobalTemp["Year"])
X = np.array([np.repeat(1,n), GlobalTemp["Year"]]).T
H = X @ np.linalg.inv(X.T @ X) @ X.T
h = H.diagonal(0)
r = fitTemp.resid
sigma = np.sqrt(fitTemp.scale)
rstandard = r / (sigma * (np.sqrt(1 - h)))
rstudent = fitTemp.outlier_test()
rstudent

student_resid unadj_p bonf(p)
0 1.053760 0.293480 1.0
1 0.908978 0.364641 1.0
2 0.249237 0.803477 1.0
3 0.938548 0.349287 1.0
4 1.716483 0.087884 1.0
.. ... ... ...
169 2.330454 0.020950 1.0
170 2.305061 0.022365 1.0
171 1.222946 0.223033 1.0
172 1.966563 0.050852 1.0
173 2.561582 0.011283 1.0

[174 rows x 3 columns]

The outlier_test method include p-values for each of the residuals, either based
directly on the t-distribution of a Bonferroni adjusted version (in this case we do
174 tests). Here we focus on the visual inspection, implying residual vs. fitted and
qq-plot of the residuals
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ypred = fitTemp.predict(GlobalTemp)
fig, ax = plt.subplots(1,2)
fig = sm.qqplot(rstudent["student_resid"], stats.t,

distargs=(174-2-1,),line="q",a=1/2,ax=ax[0])
ax[0].set_title("Q-Q plot - Studentized res.")
ax[1].scatter(ypred, rstandard)
ax[1].set_xlabel("Fitted values")
ax[1].set_ylabel("Standardized Residuals")
ax[1].set_title("Residuals vs Fitted values")
plt.tight_layout()
plt.show()
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It is clear that the fit is not satisfactory, the Studentized residual does not follow a
t-distribution with 171 degrees of freedom and is seems that at least a quadratic term
is needed.

Influential observation

The residuals analysis is used for verifying the model assumptions, this im-
ply checking the distribution and variance homogeneity assumptions. As we
have discussed above the raw residuals does not have variance homogeneity
even when the iid. assumption is true. Therefore it is better to use standard-
ized or Studentized residuals for residual analysis. Further for verifying the
distributional assumption the Studentized residual have an advantage. We will
however also note that in most situations the adjustment made by

√
1− hii is

small and conclusions in well designed problems will not be greatly affected by
which type of residuals we use.

A more important part of the residual analysis is to identify influential observa-



Chapter 9 9.10 SIMPLE AND MULTIPLE LINEAR REGRESSION AS A LM 394

tions. Observation with large residuals have a high impact on the loss function
(RSS), and as such these may have a large impact on the parameter estimates.
Using the Studentized also allow us to determine what a large residual is in ab-
solute terms (i.e. compare with a specific distribution function). Even though
large residuals are in violation of the distribution assumption of the model, it
may not have a very large impact on the mean value parameters.

Besides being far away from the model, prediction an observation can also be
unusual in the sense that the experimental condition are far away from other
experiential conditions. This is measured by leverage, which is defined as the
diagonal elements of H, in order to understand this consider the derivative of
the fitted vales wrt. the observations

∂ŷ
∂y

= H, (9-213)

hence it is a measure of the change in the fitted vales for a unit chance in the
observation. This imply that an observation with a high leverage has the poten-
tial of being very influential, and we should keep an extra eye on high leverage
points. This does not imply that we should avoid such points as they are helpful
in spanning the space of possible outcomes, however as they have the poten-
tial of greatly impacting the parameter values we should pay attention to those
points.

Hence when assessing the model assumptions we should

• check normality using standardized or Studentized residuals (qq-plot)

• check variance homogeneity using standardized or Studentized residuals
(residuals vs. fitted)

• keep an eye on leverage (e.g. plotting the leverage as a function of obs
number)

• check independence (when relevant), e.g. autocorrelation using using
standardized or Studentized residuals

Observation that have the largest influence on the model are those with high
leverage and a large absolute value of the residual, and the two are sometimes
combined in Cook’s distance (which wwe will not discuss here).

Example 9.42 Temperature anomali

The leverage corresponding to the explanatory variable (year) in the temperature
data is plotted below (left). We see that the leverage is smaller for observation close
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to the center of the observed explanatory variables and somewhat higher at the end-
points in the interval. The right plot is constructed imagining we have an observa-
tion of the temperature anomaly in year 1700, this is a quite extreme value compared
to the other observed years, and resulting in a very high leverage, and hence an ob-
servation there would have the potential to greatly influence the model.
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9.10.3 Multicollinarity

Multicollinarity is linked to high empirical correlation between columns in the
design matrix, and can often be identified through visual analysis of pairwise
plots of the regressors. Another way is to consider the correlation between pa-
rameters, or even more generally consider properties of the matrix XTX in par-
ticular the condition number can indicate if the matrix is close to singular.

Example 9.43 An ill-conditioned problem

To illustrate the multicollinarity problem consider the data

x1 = np.array([5.5, 6.5, -2.5, -6.5, -0.5, 1.5, -3.5, -1.5, -5.5, 4.5,
2.5, -4.5, 3.5, 0.5])

x2 = np.array([1.5, -3.5, 3.5, -1.5, 4.5, -5.5, -0.5, 6.5, -2.5, -4.5,
5.5, 2.5, 0.5, -6.5])

x3 = np.array([7.0, 3.0, 1.0, -8.0, 4.01, -4.01, -4.0, 5.0, -8.0, 0.0,
8.0, -2.0, 4.0, -6.0])

y = np.array([32.43, 15.54, 2.50, -15.62, 5.45, -8.61, -2.50, 33.33,
-39.56, -27.26, 14.44, -0.50, 22.66, -18.53])

datIll = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'y': y})
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x1, x2, and x3 are constructed such that the average of each of them is zero, and
hence the correlation between (not to be confused with the correlation between the
parameters) them can be calculate by

X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3})
C = X.T @ X
Cd = np.diag(np.sqrt(np.diag(C)))
np.linalg.inv(Cd) @ C @ np.linalg.inv(Cd)

0 1 2
0 1.000000 -0.164835 0.646002
1 -0.164835 1.000000 0.646410
2 0.646002 0.646410 1.000000

here there are no very strong correlation, however the condition number is

np.linalg.cond(C)

np.float64(10968536.72257104)

which is extremely large. In this case the result of Type I and Type III partitioning of
variation will also be very different.

fit = smf.ols('y ~ x1 + x2 + x3',data = datIll).fit()
## Type I
sm.stats.anova_lm(fit, typ = 1)

df sum_sq mean_sq F PR(>F)
x1 1.0 1193.490794 1193.490794 7.513585 0.020794
x2 1.0 3139.890575 3139.890575 19.767085 0.001243
x3 1.0 202.736604 202.736604 1.276322 0.284954
Residual 10.0 1588.443948 158.844395 NaN NaN

## Type III
sm.stats.anova_lm(fit, typ = 3)

sum_sq df F PR(>F)
Intercept 13.543779 1.0 0.085264 0.776254
x1 203.773250 1.0 1.282848 0.283797
x2 204.077732 1.0 1.284765 0.283458
x3 202.736604 1.0 1.276322 0.284954
Residual 1588.443948 10.0 NaN NaN
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hence we see that from the Type I analysis we should remove x3 (because it was
entered last), while the Type III analysis show that we can actually remove any of
the 3 regressors.

The example illustrate that there might be big differences in conclusion depend-
ing on the chosen partitioning and a natural question is if there are situations
where conclusions is aligned, the answer is given in the next theorem.

Theorem 9.44 Orthogonal parameters and and partioning

With an orthogonal parametrization (see Definition 9.25) then Type I and
Type III partitioning is equivalent.

Proof

An orthogonal parametrization imply that XTX = Λ, where Λii = λi and Λij = 0 if
i 6= j. Hence (XTX)−1 = Λ−1 with (Λ−1)ii = 1/λi and zero otherwise. Now let the
columns of X be denoted by xi, the orthogonality imply that

H = X(XTX)−1XT =
p

∑
i=1

1
λi

xixT
i , (9-214)

testing using Type I partitioning we would have

Hi − Hi−1 =
i

∑
j=1

1
λj

xjxT
j −

i−1

∑
j=1

1
λj

xjxT
j =

1
λi

xixT
i , (9-215)

and in the Type III set up we would have

Hp − H−i =
p

∑
j=1

1
λj

xjxT
j −∑

j 6=i

1
λj

xjxT
j =

1
λi

xixT
i , (9-216)

hence exactly the same projection matrix and therefore also the same test-statistics,
p-values and so on.

�

The example above highlight some multicollinarity problems in addition to the
Type I and III partitioning not agreeing large changes in the parameter values
will also be present when reducing the model (see Exercise 16). Further Theo-
rem 9.44 state that we do not have to worry abut such problem if we already
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have an orthogonal parametrization. For the problems we consider here (XTX)
is invertible, and it is always possible to transform a multicollinarity problem
to an orthogonal parametrization (see Section 9.13.2). The price to is pay is in-
terpretability of the parameters.

9.10.4 Polynomial and basis function regression

Polynomial regression is often used as a way of modeling otherwise non-linear
relationships, it is well known that any continuous function can be approxi-
mated by its Taylor expansion, hence if we assume that

Yi = f (xi) + εi; εi ∼ N(0, σ2), (9-217)

then Yi can be approximated by

Yi ≈
p

∑
j=0

1
j!

f (j)(x0)(xj − x0)
j + εi; εi ∼ N(0, σ2), (9-218)

and as p→ ∞ the approximation becomes better. When used in statistical mod-
eling, we do not known the coefficients

(
1
i! f (i)(x0)

)
, and hence the statistical

model would be

Yi =
p

∑
j=0

β j · (xi − x0)j + εi; εi ∼ N(0, σ2), (9-219)

here we can choose the expansion point (x0) as we please. The choice of x0 will
however affect the parameter correlation and thereby the multicollinarity of the
problem, often the problem is actually casted as

Yi =
p

∑
j=0

β jx
j
i + εi; εi ∼ N(0, σ2) (9-220)

such an parametrization may lead to strong multicollinarity and often the model
is formulated as

Yi =
p

∑
j=0

β j · pj(xi) + εi; εi ∼ N(0, σ2) (9-221)

where pj(xi) is a j’th order polynomial, chosen such that

n

∑
i=1

pk(xi)pl(xi) = 0; for k 6= l. (9-222)

resulting in an orthogonal parametrization. Often the extra constraint ∑i pk(xi)
2 =

1 for k > 0 is added.



Chapter 9 9.10 SIMPLE AND MULTIPLE LINEAR REGRESSION AS A LM 399

Example 9.45 Temperature anomali

The analysis in Example 9.41 suggest that at least a quadratic term should be in-
cluded. As a starting point we might included a forth order polynomial, in the sum-
mary below pj_raw is short for (Yeari/max(Year))j, from the partial t-test it seems
that none of coefficient are significant. However it is also clear from the test of total
homogeneity that at least one of the terms are significant. Further it is noted in the
summary that the smallest eigenvalue is 2 · 10−13 indicating very strong multicolli-
narity.

fitTemp4 = smf.ols('Anomaly ~ p1_raw + p2_raw+ p3_raw+p4_raw',
data = GlobalTemp).fit()

fitTemp4.summary(slim=True)

<class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Anomaly R-squared: 0.839
Model: OLS Adj. R-squared: 0.835
No. Observations: 174 F-statistic: 220.0
Covariance Type: nonrobust Prob (F-statistic): 7.31e-66
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 5915.1051 4.01e+04 0.148 0.883 -7.32e+04 8.5e+04
p1_raw -2.707e+04 1.68e+05 -0.162 0.872 -3.58e+05 3.04e+05
p2_raw 4.64e+04 2.63e+05 0.177 0.860 -4.72e+05 5.65e+05
p3_raw -3.531e+04 1.83e+05 -0.193 0.847 -3.97e+05 3.26e+05
p4_raw 1.007e+04 4.78e+04 0.211 0.833 -8.43e+04 1.04e+05
==============================================================================

[2] The smallest eigenvalue is 2.01e-13. This might indicate that there are
"""

In addition to the notes made above we also see very large coefficient (the output is
plus minus a few degrees and the coefficient are above 104). Of course we can in this
case just check third and second degree order polynomials
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sm.stats.anova_lm(fitTemp2,fitTemp3,fitTemp4)

df_resid ssr df_diff ss_diff F Pr(>F)
0 171.0 4.821795 0.0 NaN NaN NaN
1 170.0 4.559946 1.0 0.261849 9.707168 0.002155
2 169.0 4.558750 1.0 0.001196 0.044341 0.833474

It is clear that the model can be reduced to a third degree polynomial, but should
probably not be reduced further.

As illustrated in the above example care should be taken when constructing
polynomial regression models. Strong multicollinarity might be introduced if
polynomials are naively formulated, below we will discuss how orthogonal
polynomials can be formulated.

Construction of orthogonal polynomials

The definitions discussed above might seems a bit abstract and difficult to han-
dle in practice, it is however quite simple to set up recursive algorithms for the
construction. Start by setting p0(xi) = 1, and define

p1(xi) = a10 + xi (9-223)

the orthogonality constraint imply

∑
i

p0(xi)p1(xi) = ∑
i

a10 + xi = na10 + nx̄ = 0 (9-224)

or a10 = −x̄. For the normalization set

p̃1(xi) = a11(a10 + xi) (9-225)

and hence the normalization imply

∑ p̃1(xi)
2 = a2

11(a10 + xi)
2 = 1 (9-226)

or a11 = 1/
√

∑(a10 + xi)2 = 1/
√

∑(xi − x̄)2 and hence

p̃1(xi) = −
x̄√

∑(xi − x̄)2
+

xi√
∑(xi − x̄)2

(9-227)

In order to simplify notation we will set pki = pk(xi) (i.e. the k’th order polyno-
mial applied to xi), for the second order polynomial (p2i = a20 + a21xi + x2

i ) we
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have

∑ p̃0i p2i =∑
i

a20 p̃0i + a21 p̃0ixi + x2
i p̃0i = a20np̃0 + a21np̃0x + nx2 p̃0 = 0

∑ p̃1i p2i =∑
i

a20 p̃1i + a21 p̃1ixi + x2
i p̃1i = a20np̃1 + a21np̃1x + nx2 p̃1i = 0,

(9-228)

where the “bar” notation simply means the average of what is under the bar
(e.g. p1x = 1

n ∑i p1ixi). This define a set of linear equations

[
p̃0 p̃0x
p̃1 p̃1x

] [
a20
a21

]
=

[
−x2 p̃0

−x2 p̃1

]
(9-229)

which is easily solved numerically, finally the polynomial can be normalized by

a22 =
1√

∑i p2
2i

(9-230)

and setting ã20 = a22a20 and ã21 = a22a21 by the same factor to get the polyno-
mial

p̃2i = ã20 + ã21xi + a22xi. (9-231)

In general we can calculate the the first k coefficient of the k’th order orthogonal,
based in the previous polynomials as the solution to




p̃0 p̃0x · · · p̃0xk−1

...
...

...
p̃k−1 p̃k−1x · · · p̃k−1xk−1







ak0
...

ak,k−1


 =



−xk p̃0

...
−xk p̃k−1


 (9-232)

which can again be normalized as in the case of the second degree polynomial.

Example 9.46 Temperature anomali

The figure below show the orthogonal and the “raw” polynomials (Example 9.45),
the “raw” polynomials all seems linear on this scale. This apparent linearity leads to
the large multicollinarity problems that was evident in Example 9.45. On the other
hand it is clear orthogonal polynomials are well separated and able to take care of
different shapes in the resulting models.
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The result of fitting the 4’th order orthogonal polynomials to data is given in the
summary table below, the overall statistics (test for total homogeneity, and R2) are
the same, but we can now directly from the output see that the 3’rd order polynomial
should be included (using the usual 5%) level, but that the 4’th order should not.
Also the extreme values of the parameters are no longer present.

fitTemp4ort = smf.ols('Anomaly ~ p1 + p2 + p3 + p4',data=GlobalTemp).fit()
fitTemp4ort.summary(slim=True)

<class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Anomaly R-squared: 0.839
Model: OLS Adj. R-squared: 0.835
No. Observations: 174 F-statistic: 220.0
Covariance Type: nonrobust Prob (F-statistic): 7.31e-66
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0545 0.012 4.380 0.000 0.030 0.079
p1 4.1365 0.164 25.186 0.000 3.812 4.461
p2 2.5217 0.164 15.354 0.000 2.197 2.846
p3 0.5117 0.164 3.116 0.002 0.187 0.836
p4 0.0346 0.164 0.211 0.833 -0.290 0.359
==============================================================================

"""

For completeness we include a more complete residual and model analysis of the
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final 3’rd order polynomial regression model. The figure below show that the model
follow the data quite well, and there are no systematic behavior in the standardized
residuals vs. fitted values (of course there are many observations of small fitted
values, but that is the nature of data). Also the qq-plot of Studentized residuals
does not raise any concerns, there is one quite large Studentized residual of about 4,
which is caused by the unusually high temperature around the year 1880.

The last plot is used for assessing the independence assumption and is based on the
standardized residuals. The data is given as a time-series and therefore it is reason-
able to check the correlation between observations at time t and time t + 1, even
though weak there seem to be some positive temporal correlation in the residuals.
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For a more precise statement on the correlation between rrs
i and rrs

i+1 we can calculate
it in Python by
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n = len(rstandard)
r1 = rstandard[0:(n-1)]
r2 = np.roll(rstandard,-1)[0:(n-1)]
res = pd.DataFrame({"r1" : r1, "r2" : r2})
res.corr()

r1 r2
r1 1.000000 0.234337
r2 0.234337 1.000000

hence an estimated correlation of about 0.234, which by (9-130) (on page 372),
should be compared with a N(0, 1/(n − 1)) distribution, the resulting test statis-
tics is z = 0.234/

√
1/173 = 3.08, and hence there is a significant autocorrelation in

the residuals. Even though there is a significant autocorrelation it is small in this
case and not expected to affect the estimation results greatly in this case.

In the example above we saw that including orthogonal polynomial gave more
reasonable results and in that light it is important. However simpler meth-
ods will often be enough, e.g. subtraction the average of the regressors usually
make polynomial regression much more robust (even though not completely
orthogonal). In addition variants of polynomial basis functions, like Legen-
dre polynomials, will often also do very good (when implemented appropriate
ways). Hence simpler measures can be taken that greatly improve the condition
number without making everything completely orthogonal.

Other basis functions

Before using polynomial regression one should carefully consider if it is the
right choice, for example if there is a natural periodicity (e.g. hour of day) it is
better to use Fourier series expansion, i.e. replace β j · pj(xi) by β1jsin(j2πxi/P)+
β2jcos(j2πxi/P) where P is the period (e.g. 24 hours). Finally more local basis
functions (e.g. spline basis functions) are often used.

Predictions using basis function

Extrapolation the results of linear regression models should always be done
with care, this is especially true if polynomial type basis functiuons are used.
The behaviour of the resulting functions may be quite extreme in areas where
there are no data.
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9.11 One-way ANOVA as a LM

The one-way ANOVA model can be written as

Yij = βi + εij; εij ∼ N(0, σ2), (9-233)

in the following we will assume that the vector of observations is organized as
y = [y11, y12, ..., y1n1 , y21, ..., y2n2 , ..., yKnK ], with that convention the design ma-
trix for the one-way ANOVA model can be written as

X =




1n1 0n1 . . . 0n1

0n2 1n2 . . . 0n2
... . . . ...

0nK 0nK . . . 1nK


 , (9-234)

in this case the parameters are the group means. The standard encoding, in e.g
Python, is

X2 =




1n1 0n1 . . . 0n1

1n2 1n2 . . . 0n2
... . . . ...

1nK 0nK . . . 1nK


 , (9-235)

in which case the first parameters is the mean of group 1 and the remaining
parameters is the difference between mean in group 1 and and group i, β =
[µ1, µ2 − µ1, . . . , µK − µ1]

T. Again we can write X2 as

X2 = XT , (9-236)

with

T =




1 0 . . . 0
1 1 . . . 0
... . . . ...
1 0 . . . 1


 , (9-237)

and hence the two models are equivalent.

In Chapter 8 we considered the model

yij = µ + αi + εij, (9-238)

such a model is over-parameterized and in Chapter 8 this over-parametrization
was dealt with (even though not explicitly mentioned) by the linear constraints

K

∑
i=1

niαi = 0. (9-239)
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We can now choose an arbitrary reference level, e.g. group K, and write

αK = −
K−1

∑
i=1

ni

nK
αi (9-240)

and with µi = µ + αi we can write

X3 =




1n1 1n1 . . . . . . 0n1

1n2 0n2 1n2 . . . 0n2
...

... . . . ...
1nK−1 0nK−1 . . . 1nK−1

1nK − n1
nK

1nK . . . . . . −nK−1
nK

1nK




, (9-241)

which again can be written as

X3 = XT , (9-242)

for appropriate choice of T .

9.11.1 Orthogonal design: Helmert-transform

The formulation (9-234) is an orthogonal parametrization, however there is not
one parameter for the over all mean value, but rather one parameter for the
mean in each group. In the balanced case another orthogonal transformation is
the Helmert transformation, defined by

TH =




1 −1 −1 −1 . . . −1
1 1 −1 −1 . . . −1
1 0 2 −1 . . . −1
1 0 0 3 . . . −1
...

... . . . . . . ...
1 0 . . . 0 k− 1




, (9-243)

if TH is “normalized” by a diagonal matrix D with Dii = 1/i (i.e. THN = TD),
the interpretation of the parameters is (Exercise 17)

β̂1 =ȳ

β̂i =ȳi+1 −
1
i

i

∑
j=1

ȳj, for i = 1, 2, ..., k− 1.
(9-244)

Hence the difference between group i and the average of the preceding groups.
Orthogonality imply that variances of linear combinations of parameters are
easily calculated, and also as discussed above that Type I and Type III are equiv-
alent.
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9.11.2 Statistical tests

Statistical test are preformed exactly as we have seen in the previous sections,
compared to the linear regression the only difference is that usually the per-
formed test is the test for total homogeneity (all mean values are equal), and
hence no discussion about the order. The post hoc analysis (i.e. when the null
hypothesis is rejected), does include a decision on the partitioning.

9.11.3 Contrasts

The matrix T define so-called contrasts, we will no go further into that subject
here, just mentioned that the transformation defined by (9-237) is often called
treatment-coding, while the formulation (9-241) is (at least in the balanced case
(ni = nj)) called sum-coding.

9.11.4 Partial tests and post hoc analysis

If we are interested in a particular quantity (e.g. µi − µj for fixed (i, j)), then
we can simply formulate the model such that the difference is a parameter and
use the usual partial t-test. In more generality, if we are interested in all pair-
wise comparisons (as in Method 8.9), it correspond to a Type III partitioning of
variation.

Theorem 9.47 Post hoc comparison and Type III

The post hoc comparison in Methods 8.9 and 8.10, is equivalent to compar-
ing the model

Yij = βi + εij; εij ∼ N(0, σ2) (9-245)

to a model where βl = βh using a Type III partitioning of variation.
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Proof

Method 8.10 state that under the hypothesis that µl = µh then

tobs =
Ȳl − Ȳh√

MSE
(

1
nl
+ 1

nh

) ∼ t(n− k) (9-246)

implying that t2
obs ∼ F(1, n− k). Hence we need to show that

YT(H − H0)Y
YT(I − H)Y/d fSSE

= t2
obs, (9-247)

where H is the projection matrix corresponding to the full model and H0 is the
projection matrix corresponding to the null hypothesis. First note that MSE =

YT(I − H)Y/d fSSE, and hence we need to show that

(Ȳl − Ȳh)
2

1
nl
+ 1

nh

= YT(H − H0)Y . (9-248)

The projection matrix for the model is

H =




1
n1

En1n1 0n1n2 . . . 0n1nk

0n2n1
1
n2

En2n2 . . . 0n2nk
...

. . .
...

0nKn1 0nKn2 . . . 1
nk

EnKnk




(9-249)

where Eninj is an ni by nj matrix of ones. Without loss of generality we can consider
l = 1 and h = 2, in that case the null hypothesis correspond to the design matrix

X0 =




1n1 0n1 . . . 0n1

1n2 0n2 . . . 0n2

0n3 1n3 . . . 0n3
...

. . .
...

0nK 0nK . . . 1nK




(9-250)

resulting in

H0 =




1
n1+n2

En1+n2,n1+n2 0n1+n2,n3 . . . 0n1+n2,nk

0n3,n2+n1
1
n3

En3n3 . . . 0n3nk
...

. . .
...

0nk ,n1+n2 0nkn2 . . . 1
nk

Enknk




(9-251)

and hence

H − H0 =




(
1
n1
− 1

n1+n2

)
En1,n1 − 1

n1+n2
En1,n2 0

− 1
n1+n2

En2,n1

(
1
n2
− 1

n1+n2

)
En2n2 0

0 0 0


 (9-252)
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now since YT
i Eni ,niYi = n2

i Ȳ2
i , and YT

1 En1,n2Y2 = n1n2Ȳ1Ȳ2 we get

YT(H − H0)Y =

(
1
n1
− 1

n1 + n2

)
n2

1Ȳ2
1 +

(
1
n2
− 1

n1 + n2

)
n2

2Ȳ2
2−

2
n1 + n2

n1n2Ȳ1Ȳ2

=n1Ȳ2
1 + n2Ȳ2

2 −
1

n1 + n2
(n1Ȳ1 + n2Ȳ2)

2

=
1

n1 + n2
(n1(n1 + n2)Ȳ2

1 + n2(n1 + n2)Ȳ2
2 − (n1Ȳ1 + n2Ȳ2)

2)

=
1

n1 + n2
(n1n2Ȳ2

1 + n2n1Ȳ2
2 − 2n1n2Ȳ1Ȳ2)

=
n1n2

n1 + n2
(Ȳ1 − Ȳ2)

2

=
(Ȳ1 − Ȳ2)2

1
n1

+ 1
n2

(9-253)

which is (9-248).

�

Of course the comments on multiple testing still apply and the significance level
might be adjusted accordingly. As a more general remark it also imply that
when using Type III partitioning the risk of over parametrization should always
be taken into account, in particular if a high number of hypothesis are tested
during model development.

9.12 Two-way ANOVA as a LM

The two-way anova model can be written as

Yij = µ + αi + β j + εij; εij ∼ N(0, σ2) (9-254)

as we will see below the model is easily written as an LM, we start by showing
the equivalence between a specific two-way anova and the paired t-test.

9.12.1 Paired t-test as an LM

The paired t-test can be written as a two-way anova model as

Y1j = µ1 + β j + ε1j; ε1j ∼ N(0, σ2) (9-255)
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if the observation is from group 1 and

Y2j = µ2 + β j + ε2j; ε2j ∼ N(0, σ2) (9-256)

if the observation is from group 2. In the paired t-test set up we consider

Dj = Y1j −Y2j =µ1 − µ2 + ε1j − ε2j

=µD + ε̃j; ε̃j ∼ N(0, σ̃2),
(9-257)

note that the assumption of equal variance is not formally a part of the paired
t-test as the method only “see” the difference (ε̃j), actually ε1,j and ε2,j does not
even have to be independent or normally distributed.

The system described in (9-255)-(9-256) is over parameterized (we cannot iden-
tify µ1, µ2 and β1, ..., βn), as discussed in the previous section there are a number
of ways to solve this, one is to parameterized by

Y1,j =
1
2

µD + β j + ε1,j

Y2,j =−
1
2

µD + β j + ε2,j,
(9-258)

with the design matrix

X =

[ 1
21 I
−1

21 I

]
, (9-259)

which is an orthogonal parametrization (see Exercise 18). The parameters are
β = [µD, β1, ..., βn]T. The estimator for µ̂D is the average difference is (see Exer-
cise 18)

µ̂D = Ȳ1 − Ȳ2 = D̄, (9-260)

and we known from Chapter 2 that the usual paired t-test is

tobs =
D̄

sD/
√

n
∼ t(n− 1), (9-261)

hence equivalence between the two-way anova setup and the paired t-test cor-
respond to s2

D/n = SSE/d fSSE(XTX)−1
11 , it can be shown that (Exercise 18)

SSE = YT(I − H)Y =
1
2

n

∑
i=1

(Di − D̄)2 (9-262)

and that (XTX)−1
ii = 2

n , and further d fSSE = n− 1. Hence

SSE
d fSSE

(XTX)−1
11 =

1
n

1
n− 1

n

∑
i=1

(Di − D̄)2 =
s2

D
n

, (9-263)

showing the equivalence. An added benefit of the anova approach is that the
effect of “subjects” (β̂ j) is estimated as part of the procedure.
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9.12.2 Two-way anova as an LM

In the general case of two way anova a direct approach for the design matrix
could be

X0 =




1b 0b . . . 0b I
0b 1b . . . 0b I
... . . . ...

...
0b 0b . . . 1b I


 , (9-264)

where b is the number of “blocks” and the number of treatments is k. The model
is over-parameterized (rank(X) is b + k − 1 not b + k), as e.g. the first column
can be written as the sum of the last b columns minus column 2 through k.
Hence one column should be removed, e.g. by replacing I with

Ĩ =

[
0

Ib−1

]
. (9-265)

In this case the first k parameters are the mean value for the k treatments when
observing from block 1, and the remaining b− 1 parameters describe the deriva-
tion from those values due to different block effects.

Hence one encoding of the two-way anova is

X =




1b 0b . . . 0b Ĩ
0b 1b . . . 0b Ĩ
... . . . ...

...
0b 0b . . . 1b Ĩ


 . (9-266)

A more common encoding is

X1 =




1b 0b . . . 0b Ĩ
1b 1b . . . 0b Ĩ
... . . . ...

...
1b 0b . . . 1b Ĩ


 , (9-267)

in this case the first parameter is the expected value for an observation in treat-
ment 1 and block 1. And the transformation between the two formulation can
be done by the matrix

T =




1 0 0
1b−1 Ib−1 0

0 0 Ib−1


 . (9-268)
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Finally we considered the model

Yij = µ + αi + β j + εij (9-269)

in Chapter 8, and the implicit constraints are

k

∑
i=1

αi = 0;
l

∑
j=1

β j = 0, (9-270)

and with the same arguments as in the one-way ANOVA model the design
matrix can be written as (see Exercise 19 )

X2 =




1l 1l . . . 0l B
1l 0l . . . 1l B
... . . . ...

...
1l −1l . . . −1l B


 , (9-271)

with

B =




1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1
−1 −1 . . . −1




. (9-272)

The transformation between the encoding is a bit more complicated in the case.
Regardless of the particular parametrization, then testing in the two-way anova
model in situations as describe above is the same regardless of the used separa-
tion of variation (type I or II). In order to be able to make the precise statement
we need the concept of balanced design.

Definition 9.48 Balanced design

A design matrix is said to be balanced if the number of observations for any
given combination of factors is the same fixed number.

In a two-way ANOVA there are 2 factors each on a number of levels, further
in the development we have presented here it is assumed that the number of
observations is exactly one for each combination. Of course the definition hint
to the fact that we could have more than one, but then the design matrix is
only balanced if there are exactly the same number of observations for each
combination. We can now make the precise statement about equivalence of the
tests.



Chapter 9 9.12 TWO-WAY ANOVA AS A LM 413

Theorem 9.49 Equivalence between Type I and Type III

For two-way ANOVA with balanced design, the Type I and Type III parti-
tioning of variation is equivalent.

In the proof below some steps are skipped, as these are much better done us-
ing Kronecker products, and the point is mostly which matrices that should be
compared.

Proof

We consider the following design matrices

X =




0b · · · 0b I
1b 0b I

. . .
...

...
0b · · · 1b I


 ; XTr =




1b · · · 0b
...

. . .
...

0b · · · 1b


 ; XBl =




I
...
I


 ; X0 = 1, (9-273)

and projection matrices based on each of these design matrices. The Type I parti-
tioning would be

YTY = YT H0Y + YT(HTr − H0)Y + YT(H − HTr)Y + YT(I − H)Y (9-274)

or

YTY = YT H0Y + YT(HBl − H0)Y + YT(H − HBl)Y + YT(I − H)Y (9-275)

depending on which effect (treatment or “block”) that entered the model last. Hence
we are done if we can show that H − HBl = HTr − H0 and H − HTr = HBl − H0. By
direct matrix multiplications it can be shown that

XTX =

[
bI Ek−1,b

Eb,k−1 kI

]
(9-276)

and it is easy to check that (using that Ek−1,bEb,k−1 = bEk−1,k−1)

(
XTX

)−1
=

[ 1
b (I + Ek−1,k−1) − 1

b Ek−1,b

− 1
b Eb,k−1

1
k

(
I + k−1

b Ebb

)
]

(9-277)

which imply that (and here we leave out some of the details, but see Exercise 20) the
projection matrix can be written as

H =




H11 · · · H1k
...

. . .
...

Hk1 · · · Hkk


 , (9-278)
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with

Hii =
1
k

I +
k− 1

kb
Ebb; and Hij =

1
k

I − 1
kb

Ebb, for i 6= j. (9-279)

Now since XT
TrXTr = bI and XT

BlXBl = kI, we can write the corresponding elements
of the other projection matrices as

HTr,ii =
1
b

Ebb; HTr,ij = 0, for i 6= j.

HBl,ij =
1
k

I; for all (i, j)

H0,ij =
1
bk

Ebb; for all (i, j)

(9-280)

and hence

Hii − HTr,ii =
1
k

I +
k− 1

kb
Ebb −

1
b

Ebb =
1
k

I − 1
kb

Ebb = HBl,ii − H0,ii

Hij − HTr,ij =
1
k

I − 1
kb

Ebb − 0 =
1
k

I − 1
kb

Ebb = HBl,ij − H0,ij

(9-281)

showing that H − HTr = HBl − H0, and further

Hii − HBl,ii =
1
k

I +
k− 1

kb
Ebb −

1
k

I =
k− 1

kb
Ebb = HTr,ii − H0,ii

Hij − HBl,ij =
1
k

I − 1
kb

Ebb −
1
k

I = − 1
kb

Ebb = HTr,ij − H0,ij

(9-282)

showing that H − HBl = HTr − H0 and completing the proof.

�

Theorem 9.49 show that in the case of two-way ANOVA with a balanced design,
we do not have to worry about differences in how we test. This is a unique prop-
erty of balanced design and it is usually not present in regression type models.
Further it is not unusual that there are missing data in a factorial experiment,
and then the two test strategies will differ. In general the Type III partitioning
of variation is simpler to understand, but of course observing mass significance
(and adjust significance levels), if many tests are conducted.

9.13 Further generalizations

Clearly one can imagine endless generalizations of the general linear model,
here we have selected a few that we will briefly cover without going into many
details of the modeling aspects. Instead focusing on the general model set up in
each of the cases.
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9.13.1 Multiple factors, interactions and regression

The one- and two way anova models that we have covered so far can be gen-
eralized to more than two factors in a fairly obvious way, so that we have mea-
surements a associated treatments on a number of different levels, e.g. the yield
from of some crop depending on the field (field), fertilized (fer), and pesti-
cides (pes), a simple model would be

Yi = β0 + β1(fieldi) + β2(feri) + β2(pesi) + εi; εi ∼ N(0, σ2),

where each of the parameters (e.g. β1) are actually vectors (e.g. with four fields
then β1 ∈ R3). In such a setup we can have more than one observation for each
combination of field, pesticide, and fertilizer. Clearly we can have an arbitrary
number of factors

Yi = β0 +
p

∑
j=1

βp(facji) + εi; εi ∼ N(0, σ2).

In these cases the design matrix may be parameterized by zeros and ones. All
comments on the design matrix that we have covered in the previous also hold
in this situation. Further interaction effects are often considered, corresponding
to the model

Yi =β0 + β1(fieldi) + β2(feri) + β2(pesi) + β4(fieldi, feri)+

β5(fieldi, pesi) + β5(feri, pesi) + εi; εi ∼ N(0, σ2),

this is referred to as a two-way interaction model, and of course we could imag-
ing three or four way interaction models. The number of parameters grow quite
fast and considerations on that should be taken. Again the comment on test still
apply, though higher order interactions are usually tested before main effects
(and lower order interactions), this is in essence what is referred to as Type II
partitioning of variation.

Regression analysis and factor analysis can also easily be implemented as an
LM, with one factor (on p levels) the model would be

Yi = β0(faci) + β1(faci)xi + εi; εi ∼ N(0, σ2) (9-283)

essentially implying that the slope is different in different groups, and it can
of course be combined with multiple factor and multiple regressors. With in-
creasing complexity of the models the choices of model reduction strategies also
become more important and some thoughts have to be out into that.
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9.13.2 Orthogonal parametrization: PCR

We have previously seen that multicollinarity should be dealt with if it occur.
In Chapter 6 we discussed very simple way to deal with it, in this section we
will briefly explain one way of removing multicollinarity all together, the price
to pay is that the interpretation of the parameters become much more difficult.
First note that the parameters are orthogonal (independent) if

XTX = Λ, (9-284)

where Λ is a diagonal matrix.

Assume that we have a design matrix

X =
[
1 x1 . . . xp

]
, (9-285)

the first column is independent from the remaining columns if x̄i = 0 for all i,
to see this consider

(XTX)1,i = 1Txi = ∑
j

xij = nx̄i. (9-286)

Hence defining the transformation matrix

T =




1 −x̄1 −x̄2 . . . −x̄p
0 1 0 . . . 0
... . . . ...
... . . . ...
0 . . . . . . . . . 1




, (9-287)

we have

XT =
[
1 Xc

]
, (9-288)

where

(XT)TXT =

[
1 0
0 XT

c Xc

]
, (9-289)

if we denote the collection of eigen-vectors of XT
c Xc by W , then by definition

W−1XT
c XcW = Λ, (9-290)

where Λ is a diagonal matrix with diagonal elements equal the eigenvalues of
XT

c Xc, further as XT
c Xc is symmetric, we also have

W−1 = W T (9-291)
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by Lemma 9.3. And hence

(XcW)TXcW = Λ, (9-292)

and hence setting

Tw =

[
1 0
0 W

]
(9-293)

then with

X̃ = XTTw (9-294)

the parameters are orthogonal, i.e. X̃TX̃ is a diagonal matrix. The price to
pay is that each parameter refer to linear combinations of regressors, and hence
difficult to interpret.

9.13.3 Estimation correlation structures

The general linear model can be written as

Y ∼ Nn(Xβ, Σ), (9-295)

so far we have considered cases where Σ = σ2I, but is is natural to ask what
happens if Σ 6= σ2I, or rather what happens if the observations are not inde-
pendent?

Actually the first question might be why the observations would not be inde-
pendent. Here the answer would be in data collection procedure, if data is
collected as a time series it is natural to assume serial dependence. This would
lead to time series models, and we will not go into any details here but just
mention the simplest model

εi = φεi−1 + ui; ui ∼ N(0, σ2), (9-296)

with |φ| < 1, such a model is called an autoregresive model of order 1 (AR(1)),
and the resulting structure of the covariance matrix is

Σij =
σ2φ|i−j|

1− φ2 , (9-297)

hence an exponential decay of the covariance as a function of distance in time
(|i− j|). Here we have one extra parameter (φ) that needs to be estimated.
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Another group of models that lead to non-diagonal covariance structures is the
linear mixed effect model, where we have multiple observations from each sub-
ject, and subjects are treated as random variables, in its simplest form the model
is

Yij = β0 + ui + εij; ui ∼ N(0, σ2
u), εij ∼ N(0, σ2). (9-298)

With both ui and εij iid and independent of each other. This structure lead to
a block diagonal structure where observations from different subjects have co-
variance zero, while different observations from the same subject have covari-
ance σ2

u and the variance of the observations is σ2 + σ2
u. Again we get an extra

parameter (σ2
u) to describe the covariance structure.

For estimating parameters in general covariance structures we will need more
general objective functions than the RSS, namely yhe so-called likelihood func-
tion. The models considered in this section can be written as

Y ∼ N(Xβ, Σ(ψ)) (9-299)

where ψ is the parameters of the covariance function (in our examples ψ =
[σ2, φ] or ψ = [σ2, σ2

u]).

The idea of likelihood estimation is to maximize the probability density function
wrt. the parameters, θ = [β, ψ], formally with L(θ) = f (y; θ), the likelihood
estimate is

θ̂ = arg max
θ

L(θ), (9-300)

usually the log-likelihood function l(θ) = log L(θ) have better numerical prop-
erties, and therefore the optimization problem is usually formulated as

θ̂ = argmax
θ

l(θ). (9-301)

In the cases we have considered here the probability density function can be
written as

f (y) =
1√

2π|Σ|
e−

1
2 (y−Xβ)TΣ−1(y−Xβ) (9-302)

which result in the log-likelihood

l(θ) = −1
2

log(|Σ|)− 1
2
(y− Xβ)TΣ−1(y− Xβ) (9-303)

where additive constants (related to 2π) have been omitted. Notice that in the
case where Σ = σ2I then

l(θ) =− n
2

log(σ2)− 1
2σ2 (y− Xβ)T(y− Xβ)

=− n
2

log(σ2)− 1
2σ2 RSS(β)

(9-304)
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and hence in that case the estimation of β is not affected by ψ, and maximizing
l(σ2, β), wrt. β is the same a minimizing RSS. In the general case the estimation
of β and ψ however have to the done jointly, and in some cases specific method
are available for specific models (e.g. conditional 1-step ahead distributions for
time series) while in other cases one simply have to optimize the log-likelihood
directly.
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9.14 Exercises

Exercise 9.1 Proof of Theorem 9.14

a) Prove Theorem 9.14, using the definition in equation (9-38).

Exercise 9.2 Independence and correlation

a) Simulate Y1, X and Y2 using the setting in Example 9.15.

b) Check that both Y1 and Y2 are normal, and plot Y2 as a function of Y1.

c) Calculate the correlation between Y1 and Y2 and plot Y2 as a function of Y1
and comment on the results

Exercise 9.3 Proff of Eq. (9-50)

a) Prove that rowsums of A in (9-49) is equal zero, i.e. that A1 = 0

b) Prove Eq. (9-48)

c) Prove Eq. (9-50).
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Exercise 9.4 Proff of Corollary 9.18

a) Show that when Y ∼ Nn(µ, Σ) then, Z = Λ−1/2V T(Y − µ) ∼ Nn(0, I),
with V , and Λ as in Lemma 9.3.

b) Prove Corollary 9.18.

Exercise 9.5 Projection matrix

a) Use exercise 3 to show that A in (9-49) is an orthogonal projection matrix.

Exercise 9.6 Proof of Lemma 9.22

a) Use Lemma 9.3, property 1 of Lemma 9.22 and Theorem 9.5 to prove prop-
erty 2 of Lemma 9.22.

Exercise 9.7 Correlation

a) With r as in (9-51) what is the correlation between ri and rj?

Exercise 9.8 Lag-1 autocorrelation

Consider the random variables εi ∼ N(0, σ2), iid. and t = {1, ..., n}. Now
consider the correlation estimate,

ρ̂ε(1) =
∑n−1

t=1 εtεt+1

∑n
t=1 ε2

t
=

C
Q

, (9-305)

the idea of the questions below is that show that ρ̂ε(1) ≈ N(0, 1/n) by showing
that V[ρ̂ε(1)] ≈ 1/n. ρ̂ε(1) is simpler than ρ̂(1) in (9-129), but for n large the
behavior is similar.
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a) Show that E[C] = 0, E[Q] = nσ2, V[C] = (n − 1)σ4, V[Q] = 2nσ4, and
Cov[C, Q] = 0.

b) Use the result from question a) and non-linear error propagation to show
that V[ρ̂ε(1)] ≈ 1/n, for n large.

Exercise 9.9 Orthogonal projections

a) With H1 and H2 as in (9-70), show that Cov[H1Z, H2Z] = 0. Hint: Use
Theorem 9.10 and Exercise 5.

Exercise 9.10 Proof of Corollary 9.29

In this exercise we will prove Corollary 9.29 by a series of sub questions.

a) Show that if Y ∼ N(Xβ, σ2I) then

YT(I − H1)Y ∼ χ2(n− 2). (9-306)

Independently of the value of β

b) Show that if Y ∼ N(1µ, σ2I) then

YT(H1 − H0)Y ∼ χ2(1). (9-307)

independently of the value of µ, you may use the the formulation in (9-137)
to calculate H1, or simply use the fact that 1H1 = 1T (see Exercise 11).

c) Show that if Y ∼ N(0, σ2I) then

YT H0Y ∼ χ2(1). (9-308)
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Exercise 9.11 t-test Orthogonal projections

a) Show that the projection matrices in rhs of (9-141) are orthogonal i.e. H0(H1−
H0) = 0, H0(I−H1) = 0 and (H1−H0)(I−H1) = 0. Hint: you may start
by showing that XT

0 H1 = XT
0 . You may use the parametrization (9-137).

b) Use the result to show that

Cov[H0Y , (H1 − H0)Y ] =0
Cov[H0Y , (I − H1)Y ] =0

Cov[(H1 − H0)Y , (I − H1)Y ] =0
(9-309)

and hence that the projected vectors are independent. Also what is the
interpretation in trems of fitted values?

Exercise 9.12 t-test σ̂2 central

a) Show that σ̂2 (in Equation (9-147)) is a central estimator for the variance in
the LM, and find V[σ̂2].

Exercise 9.13 t-test Central estmators under Null-hypothesis

Consider the projection matrices for the two sample t-test (equation (9-141)),
consider two groups Y1,i ∼ N(µ1, σ2) and iid., i = {1, 2, ..., n1} and Y2,j ∼
N(µ2, σ2) and iid., j = {1, 2, ..., n2}. Define Y = [YT

1 , YT
2 ]

T = [Y1,1, ..., Y1,n1 , Y2,1, ..., Y1,n2 ]
T

and

a) Show that

YT(H1 − H0)Y =
n1n2

n1 + n2
(Ȳ1 − Ȳ2)

2 (9-310)

b) Show that E[YT(H1 − H0)Y ] =
n1n2

n1+n2
(µ1 − µ2)

2 + σ2
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• Under the assumption µ1 = µ2 = µ conclude that YT(H1 − H0)Y is a
central estimator for σ2, find the variance of this estimator, and compare
with the estimator (9-147).

Exercise 9.14 Nested projections

Let Xi be as in (9-150), i.e.

Xi =[Xi−1 X̃i] (9-311)

and condider the projection matrices based on Xi−1 ∈ Rn×pi−1 , and Xi ∈ Rn×(pi+qi)

(qi > 0)

Hi−1 =Xi−1(XT
i−1Xi−1)

−1XT
i−1

Hi =Xi(XT
i Xi)

−1XT
i

(9-312)

a) Show that XT
i Hi = XT

i .

b) Set A = (XT
i Xi)

−1, with

A =

[
A11 A12
A21 A22

]
(9-313)

with A11 ∈ Rpi×pi , A12 = AT
21 ∈ Rpi×qi , and A22 ∈ Rqi×qi , show that Akl

solve the equations

XT
i−1Xi−1A11 + XT

i−1X̃i A21 = I

XT
i−1Xi−1A12 + XT

i−1X̃i A22 = 0

X̃T
i Xi−1A11 + X̃T

i X̃i A21 = 0

X̃T
i Xi A12 + X̃T

i X̃i A22 = I

(9-314)

c) Use the result above to show that XT
i−1Hi = XT

i−1.
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Exercise 9.15 t-test parametrization

a) Assuming that Y1,i ∼ N(µ1, σ2) and Y2,j ∼ N(µ2, σ2) are iid and i ∈
{1, ..., n1} and j ∈ {1, ..., n2} formulate an LM (i.e. parametrize X)

Y = Xβ + ε; ε ∼ N(0, σ2I, (9-315)

with
[

Y1
Y2

]
=

[
1n1 a1n1

1n2 b1n2

]
(9-316)

such that the parametrization is orthogonal and β̂1 = 1
n1+n2

(n1Ȳ1 + n2Ȳ2),
i.e. the average of all observation, and β̂2 = Ȳ1 − Ȳ2.

Exercise 9.16 An ill conditioned problem

a) Using the data from Example 9.43 fit parameters for the full model and
parameter for a reduced model and compare the parameters values.

Exercise 9.17 Helmert transformation

a) With reference to (9-243) show that

THN =




1 −1/2 −1/3 −1/4 . . . −1/k
1 1/2 −1/3 −1/4 . . . −1/k
1 0 2/3 −1/4 . . . −1/k
1 0 0 3/4 . . . −1/
...

... . . . . . . ...
1 0 . . . 0 (k− 1)/k




, (9-317)

b) Using X as in (9-234) show that

XTHN =




1 −1
21 −1

31 . . . −1
k 1

1 1
21 −1

31 . . . −1
k 1

1 0 2
31 . . . −1

k 1
... . . . ...
1 0 0 . . . k−1

k 1




(9-318)
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c) Show that

(XT
HNXHN)

−1 =
1
n




1
k 0 0 . . . 0
0 2 0 . . . 0
0 0 3

2 . . . 0
... . . . ...
0 0 0 . . . k

k−1




(9-319)

d) Use the above to prove (9-244).

Exercise 9.18 Paired t-test

a) Show that the parametrization in (9-259) is an orthogonal parametrization.

b) Find the parameter estimates based on the desing matrix (9-259).

c) Find the projecion matrix corresponding to the desing matrix (9-259).

d) Prove (9-262) (Hint: you may use that YT
i E = nȲi1T)
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Exercise 9.19 2-way Anova sum-constraint

a) Find a matrix T such that

β̃ = Tβ (9-320)

with β̃ = [µ, α1, ...αk, β1, ..., βl]
T and β = [µ, α1, ...αk−1, β1, ..., βl−1]

T, such
that the constraints (9-270) are fulfilled.

b) Show that the constraints (9-270) can be realized by the desing matrix in
(9-271) (hint use the transfromation matrix T and the appropriate (non
identifiable) desing matrix corresponding to β̃).

Exercise 9.20 Two-way ANOVA*

This porpuse of this exercise is to show equation (9-278), this will rely on Kro-
necker products, and hence solving the exercise require basic understanding of
those.

First note that the (non-unique) design matrices can be written in terms of Kro-
necker products as

X =

[
0b,k−1 Ib

Ik−1 ⊗ 1b 1k−1 ⊗ Ib

]
; XTr = Ik ⊗ 1b; XBl = 1k ⊗ Ib; X0 = 1k ⊗ 1b

and

a) Use the above to write the projection matrices H0, HTr and HBl in terms of
Kronecker products.

b) Using (9-277) it is staight forward to show that

(XTX)−1 = C1 + C2 − C3 (9-321)

with

C1 =
1
b

[
I + Ek−1,k−1 −Ek−1,b
−Eb,k−1 Ebb

]
; C2 =

[
0 0k−1,b

0b,k−1
1
k I

]
;

C3 =

[
0k−1,k−1 0k−1,b
0b,k−1

1
bk Ebb

]
,

(9-322)

show that XC1XT = HTr, XC2XT = HBl, and XC3XT = H0, and hence
that H = HTr + HBl − H0.
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c) Use the above to conclude that H − HTr = HBl − H0 and H − HBl =
HTr − H0.
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Glossaries

Alternative hypothesis [Alternativ hypotese] The alternative hypothesis (H1)
is oftern the negation of the null hypothesis 142, 144, 145, 162, 178, 256,
279, 288

Binomial distribution [Binomial fordeling] If an experiment has two possible
outcomes (e.g. failure or success, no or yes, 0 or 1) and is repeated more
than one time, then the number of successes is binomial distributed 57, 59,
60, 275, 276, 288, 430

Block [Blok] The block name comes from the historical background of agricul-
tural field trials, where a block would be an actual piece of land within
which all treatments are applied 326, 327

Box plot [Box plot] The so-called boxplot in its basic form depicts the five quar-
tiles (min, Q1 , median, Q3 , max) with a box from Q1 to Q3 emphasizing
the Inter Quartile Range (IQR) 27, 30–32, 36

Categorical data [Kategorisk data] A variable is called categorical if each ob-
servation belongs to one of a set of categories 1, 27

cumulated distribution function [Fordelingsfunktion]The cdf is the function
which determines the probability of observing an outcome of a random
variable below a given value 437

χ2-distribution [χ2-fordeling (udtales: chi-i-anden fordeling)] 96, 98, 130–132,
293

confidence interval [Konfidensinterval] The confidence interval is a way to han-
dle the uncertainty by the use of probability theory. The confidence inter-
val represents those values of the unknown population mean µ that we
believe is based on the data. Thus we believe the true mean in the statis-
tics class is in this interval 121

Class The frequency distribution of the data for a certain grouping of the data
27, 29



Chapter 9 Glossaries 430

Central Limit Theorem [Centrale grænseværdisætning] The Central Limit The-
orem (CLT) states that the sample mean of independent identically dis-
tributed outcomes converges to a normal distribution 125

Continuity correction The so-called Continuity correction is a general approach
to make the best approximation of discrete probabilities 278

Continuous random variable [Kontinuert stokastisk variabel] If an outcome of
an experiment takes a continuous value, for example: a distance, a tem-
perature, a weight, etc., then it is represented by a continuous random
variable 42, 66, 68, 92, 437

Correlation [Korrelation] The sample correlation coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Covariance
16–20, 23, 87, 88, 243–245, 264, 266, 430, 436

Covariance [Kovarians] The sample covariance coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Correlation
16–20, 23, 87–89, 222, 223, 226, 228, 234, 240, 241, 258, 272, 430, 436, 438

Critical value Kritisk værdi As an alternative to the p-value one can use the so-
called critical values, that is the values of the test-statistic which matches
exactly the significance level 140–142, 144, 162, 168, 231, 232, 281, 286

Degrees of freedom [Frihedsgrader] The number of "observations" in the data
that are free to vary when estimating statistical parameters often defined
as n− 1 96, 98, 101, 108, 117, 118, 121, 129–132, 136, 140, 144, 160–162, 164,
166, 168, 176, 223, 230, 231, 233, 235, 236, 254, 256, 259, 289, 290, 293, 294,
296, 300

Descriptive statistics [Beskrivende statistik] Descriptive statistics, or explorative
statistics, is an important part of statistics, where the data is summarized
and described 1, 4, 8

Discrete random variable [Diskret stokastisk variabel] A discrete random vari-
able has discrete outcomes and follows a discrete distribution 43, 50, 53,
90, 91

Distribution [Fordeling] Defines how the data is distributed such as, normal
distribution, cumulated distribution function, probability density func-
tion exponential distribution, log-normal distribution, Poisson distribu-
tion, uniform distribution, hypergeometric distribution, binomial distri-
bution, t-distribution, F-distribution 42
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Empirical cumulative distribution [Empirisk fordeling] The empirical cumu-
lative distribution function Fn is a step function with jumps i/n at obser-
vation values, where i is the number of identical observations at that value
29, 30, 149, 205

Expectation [Forventningsværdi] A function for calculating the mean. The value
we expect for a random variable (or function of random variables), hence
of the population 51, 108, 212, 215, 221, 222, 241

Exponential distribution [Eksponential fordelingen] The usual application of
the exponential distribution is for describing the length (usually time) be-
tween events which, when counted, follows a Poisson distribution 78, 82,
192, 193, 195, 203, 430

F-distribution [F-fordelingen] The F-distribution appears as the ratio between
two independent χ2-distributed random variables 108, 430, 450

Frequency [Frekvens] How frequent data is observed. The frequency distribu-
tion of the data for a certain grouping is nicely depicted by the histogram,
which is a barplot of either raw frequencies or for some number of classes
27–29, 38

Histogram [Histogram] The default histogram uses the same width for all classes
and depicts the raw frequencies/counts in each class. By dividing the raw
counts by n times the class width the density histogram is found where
the area of all bars sum to 1 27–29, 32, 46, 77, 113, 148, 149, 185, 194, 197,
199, 220

Hypergeometric distribution [Hypergeometrisk fordeling] 60, 61, 430

Independence [Uafhængighed] 87, 90–92, 125, 148, 226, 250, 297–300

Independent samples [Uafhængige stikprøver] 171, 172, 174

(Statistical) Inference [Statistisk inferens (følgeslutninger baseret på data)] 5,
95, 112, 123, 126, 213, 231, 246

Interval [Interval] Data in a specified range 62–64, 79, 81, 113

Inter Quartile Range [Interkvartil bredde] The Inter Quartile Range (IQR) is
the middle 50% range of data 15, 436

Least squares [Mindste kvadraters (metode)] 215, 216, 218

Linear regression [Lineær regression (-sanalyse)] 1, 20, 213, 218, 221, 230, 240,
244, 253, 256, 258, 262, 265, 267, 272
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Log-normal distribution [Lognormal fordeling] 77, 430

Maximum likelihood [Estimator baseret på maximum likelihood metoden] 193,
196, 201

Median [Median, stikprøvemedian] The median of population or sample (note,
in text no distinguishment between population median and sample median)
8, 10, 11, 24, 156, 192, 195, 196, 435

Multiple linear regression [Multipel lineær regression (-sanalyse)] 1, 251, 254,
257, 258, 272

Non-parametric (test) [Ikke-parametriske (tests)] 185, 186, 192, 205, 208

Normal distribution [Normal fordeling] 66, 70, 73, 74, 77, 93, 96, 99, 101, 106,
107, 110, 113–118, 120, 123, 126, 128, 130, 148–155, 176, 179, 184–186, 192,
193, 200, 203, 229, 430

Null hypothesis [Nulhypotese (H0)] 133–136, 137, 138–142, 144, 145, 147, 159,
161–164, 166, 168, 230–232, 254, 256, 262, 279–281, 285–290, 296, 297

One-sample t-test Missing description 140, 143, 144, 178

One-sided (test) [Énsidet test] Is also called directional (test) 178, 279

P-value [p-værdi (for faktisk udfald af en teststørrelse)] 99, 133–140, 143, 147,
159, 166, 170, 174, 231, 232, 256, 265, 282, 287, 290, 292, 296, 297, 300, 316,
331, 333, 430

probability density function The pdf is the function which determines the prob-
ability of every possible outcome of a random variable 437

Poisson distribution [Poisson fordeling] 430, 431

Quantile [Fraktil, stikprøvefraktil] The quantiles of population or sample (note,
in text no distinguishment between population quantile and sample quantile)
11, 435

Quartile [Fraktil, stikprøvefraktil] The quartiles of population or sample (note,
in text no distinguishment between population quartile and sample quartile)
12, 435

Sample variance [Empirisk varians, stikprøvevarians] 13, 436

Sample mean [Stikprøvegennemsnit] The average of a sample 9, 10, 14, 24, 49,
51, 52, 54, 87, 101, 103, 105, 106, 112–117, 119, 120, 122, 125, 126, 130, 133,
158, 177, 435
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Significance level A number α (often 0.05) which is used to quantify precision
or uncertainty 430

Standard deviation [Standard afvigelse] 436

Standard normal distribution [Standardiseret normalfordeling ( N(0, 1))] 281

t-distribution [t-fordeling] 101, 430

Two-sided (test) [Tosidet test (test med tosidet alternativ)] Is also called non-
directional (test) 167, 231, 279, 285

Uniform distribution [Uniform (rektangulær) fordeling] 430
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Acronyms

ANOVA Analysis of Variance 163, 171, 302, 306, 312, 313, 318, 319, 322, 324,
326, 328, 329, 332, 334, 336, 339, Glossary: Analysis of Variance

cdf cumulated distribution function 44, 430, 437, Glossary: cumulated distribu-
tion function

CI confidence interval 113, 114, 120–123, 128–130, 132, 138, 141, 142, 147, 154,
156, 158–160, 167–171, 174, 176, 177, 192, 193, 195–198, 201, 204, 205, 208,
222, 230, 233–235, 237, 244, 254, 256, 257, 259, 262, 273, 276–278, 284, 285,
313, 315, 317, 323, 324, 332, 444–446, 449, Glossary: confidence interval

CLT Central Limit Theorem 125, 126, 128, 195, Glossary: Central Limit Theorem

IQR Inter Quartile Range 8, 15, 16, 30, 31, 196, 429, 436, Glossary: Inter Quartile
Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function 430, 437, Glossary: probability density function
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Appendix A

Collection of formulas and commands

This appendix chapter holds a collection of formulas. All the relevant equations from defi-
nitions, methods and theorems are included – along with associated Python commands. All
are in included in the same order as in the book, except for the distributions which are listed
together.

A.1 Introduction, descriptive statistics, commands and data
visualization

Description Formula Command

1.4 Sample mean
The mean of a sample.

x̄ =
1
n

n

∑
i=1

xi x.mean()

1.5

Sample median
The value that divides a sam-
ple in two halves with equal
number of observations in
each.

Q2 =





x( n+1
2 ) for odd n

x( n
2 )+x

( n+2
2 )

2 for even n
median(x)

1.7

Sample quantile
The value that divide a sam-
ple such that p of the obser-
vations are less that the value.
The 0.5 quantile is the Me-
dian.

qp =

{ x(np)+x(np+1)
2 for pn integer

x(dnpe) for pn non-integer
quantile(x,p,type=2),

1.8

Sample quartiles
The quartiles are the five
quantiles dividing the sample
in four parts, such that each
part holds an equal number of
observations

Q0 = q0 = “minimum”

Q1 = q0.25 = “lower quartile”

Q2 = q0.5 = “median”

Q3 = q0.75 = “upper quartile”

Q4 = q1 = “maximum”

quantile(x,
probs,type=2)

where
probs=p
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Description Formula Command

1.10

Sample variance
The sum of squared differ-
ences from the mean divided
by n− 1.

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2
var(x)

1.11
Sample standard deviation
The square root of the sample
variance.

s =
√

s2 =

√
1

n− 1

n

∑
i=1

(xi − x̄)2 sd(x)

1.12

Sample coefficient of vari-
ance
The sample standard devia-
tion seen relative to the sam-
ple mean.

V =
s
x̄

sd(x)/mean(x)

1.15
Sample Inter Quartile Range
IQR: The middle 50% range of
data

IQR = Q3 −Q1 IQR(x, type=2)

1.18
Sample covariance
Measure of linear strength of
relation between two samples

sxy = 1
n−1 ∑n

i=1 (xi − x̄) (yi − ȳ) cov(x,y)

1.19

Sample correlation
Measure of the linear strength
of relation between two sam-
ples between -1 and 1.

r = 1
n−1 ∑n

i=1

(
xi−x̄

sx

) (
yi−ȳ

sy

)
=

sxy
sx ·sy

cor(x,y)
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A.2 Probability and Simulation

Description Formula Command

2.6

Probability density function
(pdf) for a discrete variable
fulfills two conditions: f (x) ≥
0 and ∑all x f (x) = 1 and finds
the probality for one x value.

f (x) = P(X = x)
dnorm,dbinom,dhyper,
dpois

2.9

Cumulated distribution
function (cdf)
gives the probability in a
range of x values where
P(a < X ≤ b) = F(b)− F(a).

F(x) = P(X ≤ x)
pnorm,pbinom,phyper,
ppois

2.13
Mean of a discrete random
variable µ = E(X) = ∑∞

i=1 xi f (xi)

2.16
Variance of a discrete ran-
dom variable X σ2 = Var(X) = E[(X− µ)2]

2.32

Pdf of a continuous random
variable
is a non-negative function for
all possible outcomes and has
an area below the function of
one

P(a < X ≤ b) =
∫ b

a f (x)dx

2.33

Cdf of a continuous random
variable
is non-decreasing
and limx→−∞ F(x) =

0 and limx→∞ F(x) = 1

F(x) = P(X ≤ x) =
∫ x
−∞ f (u)du

2.34
Mean and variance for a con-
tinuous random variable X

µ = E(X) =
∫ ∞
−∞ x f (x)dx

σ2 = E[(X− µ)2] =
∫ ∞
−∞(x− µ)2 f (x)dx

2.54

Mean and variance of a linear
function
The mean and variance of a
linear function of a random
variable X.

E(aX + b) = a E(X) + b

V(aX + b) = a2 V(X)

2.56

Mean and variance of a linear
combination
The mean and variance of a
linear combination of random
variables.

E(a1X1 + a2X2 + · · ·+ anXn) =

a1 E(X1) + a2 E(X2) + · · ·+ an E(Xn)

V(a1X1 + a2X2 + . . . + anXn) =

a2
1 V(X1) + a2

2 V(X2) + · · ·+ a2
n V(Xn)
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Description Formula Command

2.58

Covariance
The covariance between be
two random variables X and
Y.

Cov(X, Y) = E [(X− E[X])(Y− E[Y])]
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A.2.1 Distributions

Here all the included distributions are listed including some important theorems and definitions
related specifically with a distribution.

Description Formula Command

2.20

Binominal distribution
n is the number of indepen-
dent draws and p is the prob-
ability of a success in each
draw. The Binominal pdf de-
scribes the probability of x
succeses.

f (x; n, p) = P(X = x)

=

(
n
x

)
px(1− p)n−x

where
(

n
x

)
=

n!
x!(n− x)!

dbinom(x, size, prob)
pbinom(q, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)
where
size=n, prob=p

2.21
Mean and variance of a bino-
mial distributed random vari-
able.

µ = np

σ2 = np(1− p)

2.24

Hypergeometric distribution
n is the number of draws
without replacement, a is
number of succeses and N is
the population size.

f (x; n, a, N) = P(X = x)

=
(a

x)(
N−a
n−x)

(N
n )

where
(

a
b

)
=

a!
b!(a− b)!

dhyper(x,m,n,k)
phyper(q,m,n,k)
qhyper(p,m,n,k)
rhyper(nn,m,n,k)
where
m=a, n=N − a, k=n

2.25

Mean and variance of a hyper-
geometric distributed random
variable.

µ = n
a
N

σ2 = n
a(N − a)

N2
N − n
N − 1

2.27

Poisson distribution
λ is the rate (or intensity) i.e.
the average number of events
per interval. The Poisson pdf
describes the probability of x
events in an interval.

f (x; λ) =
λx

x!
e−λ

dpois(x,lambda)
ppois(q,lambda)
qpois(p,lambda)
rpois(n,lambda)
where
lambda=λ

2.28
Mean and variance of a Pois-
son distributed random vari-
able.

µ = λ

σ2 = λ

2.35

Uniform distribution
α and β defines the range of
possible outcomes. random
variable following the uni-
form distribution has equal
density at any value within a
defined range.

f (x; α, β) =





0 for x < α
1

β−α for x ∈ [α, β]

0 for x > β

F(x; α, β) =





0 for x < α
x−α
β−α for x ∈ [α, β]

0 for x > β

dunif(x,min,max)
punif(q,min,max)
qunif(p,min,max)
runif(n,min,max)
where
min=α, max=β
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Description Formula Command

2.36

Mean and variance of a uni-
form distributed random vari-
able X.

µ =
1
2
(α + β)

σ2 =
1
12

(β− α)2

2.37
Normal distribution
Often also called the Gaussian
distribution.

f (x; µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

dnorm(x,mean,sd)
pnorm(q,mean,sd)
qnorm(p,mean,sd)
rnorm(n,mean,sd)
where
mean=µ, sd=σ.

2.38
Mean and variance of a nor-
mal distributed random vari-
able.

µ

σ2

2.43

Transformation of a normal
distributed random variable
X into a standardized normal
random variable.

Z =
X− µ

σ

2.46

Log-normal distribution
α is the mean and β2 is the
variance of the normal distri-
bution obtained when taking
the natural logarithm to X.

f (x) =
1

x
√

2πβ
e
− (ln x−α)2

2β2

dlnorm(x,meanlog,sdlog)
plnorm(q,meanlog,sdlog)
qlnorm(p,meanlog,sdlog)
rlnorm(n,meanlog,sdlog)
where
meanlog=α, sdlog=β.

2.47

Mean and variance of a log-
normal distributed random
variable.

µ = eα+β2/2

σ2 = e2α+β2
(eβ2 − 1)

2.48 Exponential distribution
λ is the mean rate of events.

f (x; λ) =

{
λe−λx for x ≥ 0

0 for x < 0

dexp(x,rate)
pexp(q,rate)
qexp(p,rate)
rexp(n,rate)
where
rate=λ.

2.49

Mean and variance of a ex-
ponential distributed random
variable.

µ =
1
λ

σ2 =
1

λ2

2.78
χ2-distribution
Γ
(

ν
2

)
is the Γ-function and ν is

the degrees of freedom.

f (x) =
1

2
ν
2 Γ
(

ν
2

) x
ν
2−1e−

x
2 ; x ≥ 0

dchisq(x,df)
pchisq(q,df)
qchisq(p,df)
rchisq(n,df)
where
df=ν.
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Description Formula Command

2.81

Given a sample of size n from
the normal distributed ran-
dom variables Xi with vari-
ance σ2, then the sample vari-
ance S2 (viewed as random
variable) can be transformed
to follow the χ2 distribution
with the degrees of freedom
ν = n− 1.

χ2 =
(n− 1)S2

σ2

2.83 Mean and variance of a χ2 dis-
tributed random variable.

E(X) = ν

V(X) = 2ν

2.86

t-distribution
ν is the degrees of freedom
and Γ() is the Gamma func-
tion.

fT(t) =
Γ( ν+1

2 )√
νπ Γ( ν

2 )

(
1 + t2

ν

)− ν+1
2

2.87

Relation between normal
random variables and χ2-
distributed random variables.
Z ∼ N(0, 1) and Y ∼ χ2(ν).

X =
Z√
Y/ν

∼ t(ν)

dt(x,df)
pt(q,df)
qt(p,df)
rt(n,df)
where
df=ν.

2.89

For normal distributed ran-
dom variables X1, . . . , Xn, the
random variable follows the
t-distribution, where X is the
sample mean, µ is the mean of
X, n is the sample size and S
is the sample standard devia-
tion.

T =
X− µ

S/
√

n
∼ t(n− 1)

2.93
Mean and variance of a t-
distributed variable X.

µ = 0; ν > 1

σ2 =
ν

ν− 2
; ν > 2

2.95

F-distribution
ν1 an ν2 are the degrees of
freedom and B(·, ·) is the Beta
function.

fF(x) =
1

B
( ν1

2 , ν2
2

)
(

ν1

ν2

) ν1
2

· x
ν1
2 −1

(
1 +

ν1

ν2
x
)− ν1+ν2

2

df(x,df1,df2)
pf(q,df1,df2)
qf(p,df1,df2)
rf(n,df1,df2)
where
df1=ν1,df2=µ2.

2.96

The F-distribution appears as
the ratio between two inde-
pendent χ2-distributed ran-
dom variables with U ∼
χ2(ν1) and V ∼ χ2(ν2).

U/ν1

V/ν2
∼ F(ν1, ν2)
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Description Formula Command

2.98

X1, . . . , Xn1 and Y1, . . . , Yn2

with the mean µ1 and µ2

and the variance σ2
1 and σ2

2
is independent and sampled
from a normal distribution.

S2
1/σ2

1

S2
2/σ2

2
∼ F(n1 − 1, n2 − 1)

2.101

Mean and variance of a F-
distributed variable X.

µ =
ν2

ν2 − 2
; ν2 > 2

σ =
2ν2

2(ν1 + ν2 − 2)
ν1(ν2 − 2)2(ν2 − 4)

; ν2 > 4
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A.3 Statistics for one and two samples

Description Formula Command

3.3 The distribution of the mean
of normal random variables.

X̄ =
1
n

n

∑
i=1

Xi ∼ N
(

µ,
σ2

n

)

3.5
The distribution of the σ-
standardized mean of normal
random variables

Z =
X̄− µ

σ/
√

n
∼ N

(
0, 12)

3.5
The distribution of the S-
standardized mean of normal
random variables

T =
X̄− µ

S/
√

n
∼ t(n− 1)

3.7 Standard Error of the mean SEx̄ =
s√
n

3.9 The one sample confidence in-
terval for µ

x̄± t1−α/2 ·
s√
n

3.14 Central Limit Theorem (CLT) Z =
X̄− µ

σ/
√

n

3.19
Confidence interval for the
variance and standard devia-
tion

σ2 :

[
(n− 1)s2

χ2
1−α/2

;
(n− 1)s2

χ2
α/2

]

σ :

[√
(n− 1)s2

χ2
1−α/2

;

√
(n− 1)s2

χ2
α/2

]

3.22 The p-value

The p-value is the probability of obtain-
ing a test statistic that is at least as ex-
treme as the test statistic that was actu-
ally observed. This probability is calcu-
lated under the assumption that the null
hypothesis is true.

P(T>x)=2(1-pt(x,n-1))

3.23 The one-sample t-test statistic
and p-value

p-value = 2 · P(T > |tobs|)

tobs =
x̄− µ0

s/
√

n
H0 : µ = µ0

3.24 The hypothesis test
Rejected: p-value < α

Accepted: otherwise

3.29 Significant effect An effect is significant if the p-value< α

3.31

The critical values: α/2- and
1 − α/2-quantiles of the t-
distribution with n − 1 de-
grees of freedom

tα/2 and t1−α/2
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Description Formula Command

3.32 The one-sample hypothesis
test by the critical value

Reject: |tobs| > t1−α/2
accept: otherwise

3.33 Confidence interval for µ
x̄± t1−α/2 · s√

n
acceptance region/CI: H0 : µ = µ0

3.36 The level α one-sample t-test

Test: H0 : µ = µ0 and H1 : µ 6= µ0 by
p-value = 2 · P(T > |tobs|)
Reject: p-value < α or |tobs| > t1−α/2
Accept: Otherwise

3.63
The one-sample confidence
interval (CI) sample size for-
mula

n =
( z1−α/2·σ

ME

)2

3.65 The one-sample sample size
formula

n =
(

σ
z1−β+z1−α/2
(µ0−µ1)

)2

3.42 The Normal q-q plot with
n > 10

naive approach: pi =
i
n , i = 1, . . . , n

commonly aproach: pi = i−0.5
n+1 , i =

1, . . . , n

3.49 The (Welch) two-sample t-test
statistic

δ = µ2 − µ1

H0 : δ = δ0

tobs =
(x̄1−x̄2)−δ0√
s2

1/n1+s2
2/n2

3.50 The distribution of the
(Welch) two-sample statistic

T = (X̄1−X̄2)−δ0√
S2

1/n1+S2
2/n2

ν =

(
s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1

3.51 The level α two-sample t-test

Test: H0 : µ1 − µ2 = δ0 and H1 : µ1 −
µ2 6= δ0 by p-value = 2 · P(T > |tobs|)
Reject: p-value < α or |tobs| > t1−α/2
Accept: Otherwise

3.52 The pooled two-sample esti-
mate of variance

s2
p =

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2

3.53 The pooled two-sample t-test
statistic

δ = µ1 − µ2

H0 : δ = δ0

tobs =
(x̄1−x̄2)−δ0√
s2

p/n1+s2
p/n2

3.54 The distribution of the pooled
two-sample t-test statistic

T = (X̄1−X̄2)−δ0√
S2

p/n1+S2
p/n2

3.47 The two-sample confidence
interval for µ1 − µ2

x̄− ȳ± t1−α/2 ·
√

s2
1

n1
+

s2
2

n2

ν =

(
s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1
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A.4 Simulation based statistics

Description Formula Command

4.3 The non-linear approximative
error propagation rule

σ2
f (X1,...,Xn)

= ∑n
i=1

(
∂ f
∂xi

)2
σ2

i

4.4 Non-linear error propagation
by simulation

1. Simulate k outcomes
2. Calculate the standard deviation by

ssim
f (X1,...,Xn)

=
√

1
k−1 ∑k

i=1( f j − f̄ )2

4.7
Confidence interval for any
feature θ by parametric boot-
strap

1.Simulate k samples
2.Calculate the statistic θ̂

3.Calculate CI:
[
q∗100(α/2)%, q∗100(1−α/2)%

]

4.10

Two-sample confidence inter-
val for any feature compar-
ison θ1 − θ2 by parametric
bootstrap

1.Simulate k sets of 2 samples
2.Calculate the statistic θ̂∗xk − θ̂∗yk

3.Calculate CI:
[
q∗100(α/2)%, q∗100(1−α/2)%

]
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A.5 Simple linear regression

Description Formula Command

5.4 Least square estimators

β̂1 =
∑n

i=1(Yi − Ȳ)(xi − x̄)
Sxx

β̂0 = Ȳ− β̂1 x̄

where Sxx = ∑n
i=1(xi − x̄)2

5.8 Variance of estimators

V[β̂0] =
σ2

n
+

x̄2σ2

Sxx

V[β̂1] =
σ2

Sxx

Cov[β̂0, β̂1] = −
x̄σ2

Sxx

5.12 Tests statistics for H0 : β0 = 0
and H0 : β1 = 0

Tβ0 =
β̂0 − β0,0

σ̂β0

Tβ1 =
β̂1 − β0,1

σ̂β1

5.14 Level α t-tests for parameter

Test H0,i : βi = β0,i vs. H1,i : βi 6= β0,i
with p-value = 2 · P(T > |tobs,βi |)
where tobs,βi =

β̂i−β0,i
σ̂βi

.
If p-value < α then reject H0,
otherwise accept H0

D <- data.frame(
x=c(), y=c())

fit <- lm(y~x, data=D)
summary(fit)

5.15 Parameter confidence inter-
vals

β̂0 ± t1−α/2 σ̂β0

β̂1 ± t1−α/2 σ̂β1

confint(fit,level=0.95)

5.18 Confident and prediction in-
terval

Confidence interval for the line:

β̂0 + β̂1xnew ± t1−α/2σ̂
√

1
n + (xnew−x̄)2

Sxx

Interval for a new point prediction:

β̂0 + β̂1xnew ± t1−α/2σ̂
√

1 + 1
n + (xnew−x̄)2

Sxx

predict(fit,
newdata=data.frame(),
interval="confidence",
level=0.95)

predict(fit,
newdata=data.frame(),
interval="prediction",
level=0.95)

5.23

The matrix formulation of
the parameter estimators in
the simple linear regression
model

β̂ = (XTX)−1XTY

V[β̂] = σ2(XTX)−1

σ̂2 =
RSS

n− 2

5.25

Coefficient of determination
R2 r2 = 1− ∑i(yi−ŷi)

2

∑i(yi−ȳ)2
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Description Formula Command

5.7 Model validation of assump-
tions

> Check the normality assumption with
a q-q plot of the residuals.

> Check the systematic behavior by
plotting the residuals ei as a function of
fitted values ŷi

qqnorm(fit$residuals)
qqline(fit$residuals)

plot(fit$fitted.values,
fit$residuals)
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A.6 Multiple linear regression

Description Formula Command

6.2 Level α t-tests for parameter

Test H0,i : βi = β0,i vs. H1,i : βi 6= β0,i
with p-value = 2 · P(T > |tobs,βi |)
where tobs,βi =

β̂i−β0,i
σ̂βi

.
If p-value < α the reject H0,
otherwise accept H0

D<-data.frame(x1=c(),
x2=c(),y=c())

fit <- lm(y~x1+x2,
data=D)

summary(fit)

6.5 Parameter confidence inter-
vals

β̂i ± t1−α/2 σ̂βi confint(fit,level=0.95)

6.9 Confident and prediction in-
terval (in R)

Confident interval for the line
β̂0 + β̂1x1,new + · · ·+ β̂pxp,new

Interval for a new point prediction
β̂0 + β̂1x1,new + · · ·+ β̂pxp,new + εnew

predict(fit,
newdata=data.frame(),
interval="confidence",
level=0.95)

predict(fit,
newdata=data.frame(),
interval="prediction",
level=0.95)

6.17

The matrix formulation of
the parameter estimators in
the multiple linear regression
model

β̂ = (XTX)−1XTY

V[β̂] = σ2(XTX)−1

σ̂2 =
RSS

n− (p + 1)

6.16 Model selection procedure
Backward selection: start with full
model and stepwise remove insignifi-
cant terms
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A.7 Inference for proportions

Description Formula Command

7.3 Proportion estimate and con-
fidence interval

p̂ = x
n

p̂± z1−α/2

√
p̂(1− p̂)

n

prop.test(x=, n=,
correct=FALSE)

7.10 Approximate proportion with
Z

Z = X−np0√
np0(1−p0)

∼ N(0, 1)

7.11 The level α one-sample pro-
portion hypothesis test

Test: H0 : p = p0, vs. H1 : p 6= p0

by p-value = 2 · P(Z > |zobs|)
where Z ∼ N(0, 12)

If p-value < α the reject H0,
otherwise accept H0

prop.test(x=, n=,
correct=FALSE)

7.13 Sample size formula for the CI
of a proportion

Guessed p (with prior knowledge):
n = p(1− p)( z1−α/2

ME )2

Unknown p:
n = 1

4 (
z1−α/2

ME )2

7.15

Difference of two proportions
estimator p̂1 − p̂2 and confi-
dence interval for the differ-
ence

σ̂p̂1− p̂2 =
√

p̂1(1− p̂1)
n1

+ p̂2(1− p̂2)
n2

( p̂1 − p̂2)± z1−α/2 · σ̂p̂1− p̂2

7.18 The level α one-sample t-test

Test: H0 : p1 = p2, vs. H1 : p1 6= p2

by p-value = 2 · P(Z > |zobs|)
where Z ∼ N(0, 12)

If p-value < α the reject H0,
otherwise accept H0

prop.test(x=, n=,
correct=FALSE)

7.20 The multi-sample proportions
χ2-test

Test: H0 : p1 = p2 = . . . = pc = p

by χ2
obs = ∑2

i=1 ∑c
j=1

(oij−eij)
2

eij

chisq.test(X,
correct = FALSE)

7.22 The r × c frequency table χ2-
test

Test: H0 : pi1 = pi2 = . . . = pic = pi
for all rows i = 1, 2, . . . , r
by χ2

obs = ∑r
i=1 ∑c

j=1
(oij−eij)

2

eij

Reject if χ2
obs > χ2

1−α

(
(r− 1)(c− 1)

)

Otherwise accept

chisq.test(X,
correct = FALSE)
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A.8 Comparing means of multiple groups - ANOVA

Description Formula Command

8.2 One-way ANOVA variation
decomposition

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2

︸ ︷︷ ︸
SSE

+

k

∑
i=1

ni(ȳi − ȳ)2

︸ ︷︷ ︸
SS(Tr)

8.4 One-way within group vari-
ability

MSE = SSE
n−k =

(n1−1)s2
1+···+(nk−1)s2

k
n−k

s2
i = 1

ni−1 ∑ni
i=1(yij − ȳi)

2

8.6 One-way test for difference in
mean for k groups

H0 : αi = 0; i = 1, 2, . . . , k,

F = SS(Tr)/(k−1)
SSE/(n−k)

F-distribution with k − 1 and n − k de-
grees of freedom

anova(lm(y~treatm))

8.9 Post hoc pairwise confidence
intervals

ȳi − ȳj ± t1−α/2

√
SSE
n−k

(
1
ni
+ 1

nj

)

If all M = k(k − 1)/2 combinations,
then use αBonferroni = α/M

8.10 Post hoc pairwise hypothesis
tests

Test: H0 : µi = µj vs. H1 : µi 6= µj
by p-value = 2 · P(T > |tobs|)
where tobs =

ȳi−ȳj√
MSE

(
1
ni
+ 1

nj

)

Test M = k(k − 1)/2 times, but each
time with αBonferroni = α/M

8.13 Least Significant Difference
(LSD) values

LSDα = t1−α/2
√

2 ·MSE/m

8.20 Two-way ANOVA variation
decomposition

k

∑
i=1

l

∑
j=1

(yij − µ̂)2

︸ ︷︷ ︸
SST

=

k

∑
i=1

l

∑
j=1

(yij − α̂i − β̂ j − µ̂)2

︸ ︷︷ ︸
SSE

+

l ·
k

∑
i=1

α̂2
i

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

β̂2
j

︸ ︷︷ ︸
SS(Bl)
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Description Formula Command

8.22
Test for difference in means in
two-way ANOVA grouped in
treatments and in blocks

H0,Tr : αi = 0, i = 1, 2, . . . , k

FTr =
SS(Tr)/(k− 1)

SSE/((k− 1)(l − 1))

H0,Bl : β j = 0, j = 1, 2, . . . , l

FBl =
SS(Bl)/(l − 1)

SSE/((k− 1)(l − 1))

fit<-lm(y~treatm+block)
anova(fit)

One-way ANOVA

Source of Degrees of Sums of Mean sum of Test- p-

variation freedom squares squares statistic F value

Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)
k−1 Fobs =

MS(Tr)
MSE P(F > Fobs)

Residual n− k SSE MSE = SSE
n−k

Total n− 1 SST

Two-way ANOVA

Source of Degrees of Sums of Mean sums of Test p-

variation freedom squares squares statistic F value

Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)
k−1 FTr =

MS(Tr)
MSE P(F > FTr)

Block l − 1 SS(Bl) MS(Bl) = SS(Bl)
l−1 FBl =

MS(Bl)
MSE P(F > FBl)

Residual (l − 1)(k− 1) SSE MSE = SSE
(k−1)(l−1)

Total n− 1 SST
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