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3.1 Learning from one-sample quantitative data

Statistics is the art and science of learning from data, i.e. statistical inference.
What we are usually interested in learning about is the population from which
our sample was taken, as described in Section 1.3. More specifically, most of
the time the aim is to learn about the mean of this population, as illustrated in
Figure 1.1.

Example 3.1 Student heights

In examples in Chapter 1 we did descriptive statistics on the following random sam-
ple of the heights of 10 students in a statistics class (in cm):

168 161 167 179 184 166 198 187 191 179

and we computed the sample mean and standard deviation to be

x̄ = 178,

s = 12.21.

The population distribution of heights will have some unknown mean µ and some
unknown standard deviation σ. We use the sample values as point estimates for
these population parameters

µ̂ = 178,

σ̂ = 12.21.

Since we only have a sample of 10 persons, we know that the point estimate of 178
cannot with 100% certainty be exactly the true value µ (if we collected a new sample
with 10 different persons height and computed the sample mean we would defi-
nitely expect this to be different from 178). The way we will handle this uncertainty
is by computing an interval called the confidence interval for µ. The confidence in-
terval is a way to handle the uncertainty by the use of probability theory. The most
commonly used confidence interval would in this case be

178± 2.26 · 12.21√
10

,

which is

178± 8.74.

The number 2.26 comes from a specific probability distribution called the t-
distribution, presented in Section 2.86. The t-distributions are similar to the stan-
dard normal distribution presented in Section 2.5.2: they are symmetric and centred
around 0.
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The confidence interval interval

178± 8.74 = [169.3, 186.7],

represents the plausible values of the unknown population mean µ in light of the
data.

So in this section we will explain how to estimate the mean of a distribution and
how to quantify the precision, or equivalently the uncertainty, of our estimate.

We will start by considering a population characterized by some distribution
from which we take a sample x1, . . . , xn of size n. In the example above Xi
would be the height of a randomly selected person and x1, . . . , x10 our sample
of student heights.

A crucial issue in the confidence interval is to use the correct probabilities, that
is, we must use probability distributions that are properly representing the real
life phenomena we are investigating. In the height example, the population
distribution is the distribution of all heights in the entire population. So, this
is what you would see if you sampled from a huge amount of heights, say
n = 1000000, and then made a density histogram of these, see Example 1.25.
Another way of saying the same is: the random variables Xi have a probability
density function (pdf or f (x)) which describe exactly the distribution of all the
values. Well, in our setting we have only a rather small sample, so in fact we
may have to assume some specific pdf for Xi, since we don’t know it and really
can’t see it well from the small sample. The most common type of assumption,
or one could say model, for the population distribution is to assume it to be the
normal distribution. This assumption makes the theoretical justification for the
methods easier. In many cases real life phenomena actually indeed are nicely
modelled by a normal distribution. In many other cases they are not. After tak-
ing you through the methodology based on a normal population distribution
assumption, we will show and discuss what to do with the non-normal cases.

Hence, we will assume that the random variable Xi follows a normal distribution
with mean µ and variance σ2:
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Remark 3.2 How to write a statistical model

In all statistical analysis there must be an assumption of a model, which
should be stated clearly in the presentation of the analysis. The model ex-
pressing that the sample was taken randomly from the population, which is
normal distributed, can be written by

Xi ∼ N(µ, σ2) and i.i.d., where i = 1, . . . , n. (3-1)

Hence we n random variables representing the sample and they are indepen-
dent and identically distributed (i.i.d).

Our goal is to learn about the mean of the population µ, in particular, we want
to:

1. Estimate µ, that is calculate a best guess of µ based on the sample

2. Quantify the precision, or equivalently the uncertainty, of the estimate

Intuitively, the best guess of the population mean µ is the sample mean

µ̂ = x̄ =
1
n

n

∑
i=1

xi.

Actually, there is a formal theoretical framework to support that this sort of ob-
vious choice also is the theoretically best choice, when we have assumed that
the underlying distribution is normal. The next sections will be concerned with
answering the second question: quantifying how precisely x̄ estimates µ, that
is, how close we can expect the sample mean x̄ to be to the true, but unknown,
population mean µ. To answer this, we first, in Section 3.1.1, discuss the dis-
tribution of the sample mean, and then, in Section 3.1.2, discuss the confidence
interval for µ, which is universally used to quantify precision or uncertainty.

3.1.1 Distribution of the sample mean

As indicated in Example 3.1 the challenge we have in using the sample mean x̄
as an estimate of µ is the unpleasant fact that the next sample we take would
give us a different result, so there is a clear element of randomness in our esti-
mate. More formally, if we take a new sample from the population, let us call
it x2,1, . . . , x2,n, then the sample mean of this, x̄2 = 1

n ∑n
i=1 x2,i will be different
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from the sample mean of the first sample we took. In fact, we can repeat this
process as many times as we would like, and we would obtain:

1. Sample x1,1, . . . , x1,n and calculate the average x̄1

2. Sample x2,1, . . . , x2,n and calculate the average x̄2

3. Sample x3,1, . . . , x3,n and calculate the average x̄3

4. etc.

Since the sample means x̄j will all be different, it is apparent that the sample
mean is also the realization of a random variable. In fact it can be shown that if X
is a random variable with a normal distribution with mean µ and variance σ2,
then the random sample mean X̄ from a sample of size n is also a normally
distributed random variable with mean µ and variance σ2/n. This result is
formally expressed in the following theorem:

Theorem 3.3 The distribution of the mean of normal random vari-
ables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, Xi ∼ N(µ, σ2), i = 1, . . . , n, then

X̄ =
1
n

n

∑
i=1

Xi ∼ N
(

µ,
σ2

n

)
. (3-2)

Note how the formula in the theorem regarding the mean and variance of X̄ is
a consequence of the mean and variance of linear combinations Theorem 2.56

E(X̄) =
1
n

n

∑
i=1

E(Xi) =
1
n

n

∑
i=1

µ =
1
n

nµ = µ, (3-3)

and

V(X̄) =
1
n2

n

∑
i=1

V(Xi) =
1
n2

n

∑
i=1

σ2 =
1
n2 nσ2 =

σ2

n
, (3-4)

and using Theorem 2.40 it is clear that the mean of normal distributions also is
a normal distribution.
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One important point to read from this theorem is that it tells us, at least
theoretically, what the variance of the sample mean is, and hence also
the standard deviation

σX̄ =
σ√
n

. (3-5)

Let us elaborate a little on the importance of this. Due to the basic
rules for mean and variance calculations, i.e. Theorem 2.56, we know
that the difference between X̄ and µ has the same standard deviation

σ(X̄−µ) =
σ√
n

. (3-6)

This is the mean absolute difference between the sample estimate X̄
and the true µ, or in other words: this is the mean of the error we will
make using the sample mean to estimate the population mean. This is
exactly what we are interested in: to use a probability distribution to
handle the possible error we make.

In our way of justifying and making explicit methods it is useful to consider
the so-called standardized sample mean, where the X̄ − µ is seen relative to its
standard deviation, and using the standardization of normal distributions in
Theorem 2.43, which states that the standardized sample mean has a standard
normal distribution:

Theorem 3.4 The distribution of the σ-standardized mean of nor-
mal random variables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, Xi ∼ N

(
µ, σ2) where i = 1, . . . , n, then

Z =
X̄− µ

σ/
√

n
∼ N

(
0, 12

)
. (3-7)

That is, the standardized sample mean Z follows a standard normal distri-
bution.

However, to somehow use the probabilities to say something clever about how
close the estimate x̄ is to µ, all these results have a flaw: the population standard
deviation σ (true, but unknown) is part of the formula. And in most practical
cases we don’t know the true standard deviation σ. The natural thing to do is
to use the sample standard deviation s as a substitute for (estimate of) σ. How-
ever, then the theory above breaks down: the sample mean standardized by the
sample standard deviation instead of the true standard deviation no longer has
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a normal distribution! But luckily the distribution can be found (as a probability
theoretical result) and we call such a distribution a t-distribution with (n− 1)
degrees of freedom (for more details see Section 2.10.2):

Theorem 3.5 The distribution of the S-standardized mean of nor-
mal random variables

Assume that X1, . . . , Xn are independent and identically normally dis-
tributed random variables, where Xi ∼ N

(
µ, σ2) and i = 1, . . . , n, then

T =
X̄− µ

S/
√

n
∼ t(n− 1), (3-8)

where t(n− 1) is the t-distribution with n− 1 degrees of freedom.

A t-distribution, as any other distribution, has a probability density function,
presented in Definition 2.86. It is similar in shape to the standard normal dis-
tribution: it is symmetric and centred around 0, but it has thicker tails as il-
lustrated in the figure of Example 2.92. Also, the t-distributions are directly
available in Python, via the SciPy package as seen also for the other probability
distributions, see the overview of distributions in A.2.1. So we can easily work
with t-distributions in practice. As indicated, there is a different t-distribution
for each n: the larger the n, the closer the t-distribution is to the standard normal
distribution.

Example 3.6 Normal and t probabilities and quantiles

In this example we compare some probabilities from the standard normal distribu-
tion with the corresponding ones from the t-distribution with various numbers of
degrees of freedom.

Let us compare P(T > 1.96) for some different values of n with P(Z > 1.96):
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# The P(T>1.96) probability for n=10
print(1-stats.t.cdf(1.96,df=9))

0.04082220273020831

# The P(Z>1.96) probability
print(1-stats.norm.cdf(1.96))

0.024997895148220484

# The P(T>1.96) probability for n-values, 10, 20, ... ,50
print(1-stats.t.cdf(1.96,df=np.linspace(10, 50, 5)-1))

[0.041 0.032 0.030 0.029 0.028]

# The P(T>1.96) probability for n-values, 100, 200, ... ,500
print(1-stats.t.cdf(1.96,df=np.linspace(100, 500, 5)-1))

[0.026 0.026 0.025 0.025 0.025]

Note how the t-probabilities approach the standard normal probabilities as n in-
creases. Similarly for the quantiles:
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# The standard normal 97.5% quantile
print(stats.norm.ppf(0.975,loc=0,scale=1))

1.959963984540054

# The t-quantiles for n-values: 10, 20, ... ,50
# (rounded to 3 decimal points)
print(stats.t.ppf(0.975,df=np.linspace(10, 50, 5)-1))

[2.262 2.093 2.045 2.023 2.010]

# The t-quantiles for n-values: 100, 200, ... ,500
# (rounded to 3 decimal points)
print(stats.t.ppf(0.975,df=np.linspace(100, 500, 5)-1))

[1.984 1.972 1.968 1.966 1.965]

The sample version of the standard deviation of the sample mean s/
√

n is called
the Standard Error of the Mean (and is often abbreviated SEM):

Definition 3.7 Standard Error of the mean

Given a sample X1, . . . , Xn, the Standard Error of the Mean is defined as

σx̄ =
S√
n

. (3-9)

It can also be read as the Sampling Error of the mean, and can be called the
standard deviation of the sampling distribution of the mean.
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Remark 3.8

Using the phrase sampling distribution as compared to just the distribution of
the mean bears no mathematical/formal distinction: formally a probability
distribution is a probability distribution and there exist only one definition
of that. It is merely used to emphasize the role played by the distribution of
the sample mean, namely to quantify how the sample mean changes from
(potential) sample to sample, so more generally, the sample mean has a dis-
tribution (from sample to sample), so most textbooks and e.g. Wikipedia
would call this distribution a sampling distribution.

3.1.2 Quantifying the precision of the sample mean - the confi-
dence interval

As already discussed above, estimating the mean from a sample is usually not
enough: we also want to know how close this estimate is to the true mean (i.e.
the population mean). Using knowledge about probability distributions, we are
able to quantify the uncertainty of our estimate even without knowing the true
mean. Statistical practice is to quantify precision (or, equivalently, uncertainty)
with a confidence interval (CI).

In this section we will provide the explicit formula for and discuss confidence
intervals for the population mean µ. The theoretical justification, and hence as-
sumptions of the method, is a normal distribution of the population. However,
it will be clear in a subsequent section that the applicability goes beyond this
if the sample size n is large enough. The standard so-called one-sample confi-
dence interval method is:



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 10

Method 3.9 The one sample confidence interval for µ

For a sample x1, . . . , xn the 100(1− α)% confidence interval is given by

x̄± t1−α/2 ·
s√
n

, (3-10)

where t1−α/2 is the (1 − α/2) quantile from the t-distribution with n − 1
degrees of freedom.a

Most commonly used is the 95%-confidence interval:

x̄± t0.975 ·
s√
n

. (3-11)

aNote how the dependence of n has been suppressed from the notation to leave room for
using the quantile as index instead - since using two indices would appear less readable:
tn−1,1−α/2

We will reserve the Method boxes for specific directly applicable statistical meth-
ods/formulas (as opposed to theorems and formulas used to explain, justify or
prove various points).

Example 3.10 Student heights

We can now use Method 3.9 to find the 95% confidence interval for the population
mean height from the height sample from Example 3.1. We need the 0.975-quantile
from the t-distribution with n− 1 = 9 degrees of freedom:

# The t-quantiles for n=10:
print(stats.t.ppf(0.975,df=9))

2.2621571628540993

And we can recognize the already stated result

178± 2.26 · 12.21√
10

,

which is

178± 8.74 = [169.3, 186.7].

Therefore with high confidence we conclude that the true mean height of the popu-
lation of students to be between 169.3 and 186.7.
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The confidence interval is widely used to summarize uncertainty, not only for
the sample mean, but also for many other types of estimates, as we shall see
in later sections of this chapter and in following chapters. It is quite common
to use 95% confidence intervals, but other levels, e.g. 99% are also used (it is
presented later in this chapter what the precise meaning of “other levels” is).

Example 3.11 Student heights

Let us try to find the 99% confidence interval for µ for the height sample from Exam-
ple 3.1. Now α = 0.01 and we get that 1− α/2 = 0.995, so we need the 0.995-quantile
from the t-distribution with n− 1 = 9 degrees of freedom:

# The t-quantile for n=10
print(stats.t.ppf(0.995,df=9))

3.2498355415921254

And we can find the result as

178± 3.25 · 12.21√
10

,

which is:

178± 12.55 = [165.5, 190.5].

Or explicitly in Python:

# The 99% confidence interval for the mean
x = np.array([168, 161, 167, 179, 184, 166, 198, 187, 191, 179])
n = len(x)
print(x.mean() - stats.t.ppf(0.995,df=9) * x.std(ddof=1) / np.sqrt(n))

165.45078999139582

print(x.mean() + stats.t.ppf(0.995,df=9) * x.std(ddof=1) / np.sqrt(n))

190.54921000860418

Or using the function stats.t.interval from the SciPy package:
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# The 99% confidence interval for the mean
stats.t.interval(0.99,df=n-1,loc=x.mean(),
scale=x.std(ddof=1)/np.sqrt(n))

(np.float64(165.45078999139582), np.float64(190.54921000860418))

Later we will introduce a function from the SciPy package that performs a “t-
test”, which can also be used to calculate confidence intervals.

In our motivation of the confidence interval we used the assumption that the
population is normal distributed. Thankfully, as already pointed out above, the
validity is not particularly sensitive to the normal distribution assumption. In
later sections, we will discuss how to assess if the sample is sufficiently close to
a normal distribution, and what we can do if the assumption is not satisfied.

3.1.3 The language of statistics and the process of learning from
data

In this section we review what it means to make statistical inference using a
confidence interval. We review the concepts, first presented in Section 1.3, of: a
population, distribution, a parameter, an estimate, an estimator, and a statistic.

The basic idea in statistics is that there exists a statistical population (or just
population) which we want to know about or learn about, but we only have
a sample from that population. The idea is to use the sample to say something
about the population. To generalize from the sample to the population, we
characterize the population by a distribution (see Definition 1.1 and Figure 1.1).

For example, if we are interested in the weight of eggs lain by a particular
species of hen, the population consists of the weights of all currently existing
eggs as well as weights of eggs that formerly existed and will (potentially) exist
in the future. We may characterize these weights by a normal distribution with
mean µ and variance σ2. If we let X denote the weight of a randomly chosen
egg, then we may write X ∼ N(µ, σ2). We say that µ and σ2 are the parameters
of this distribution - we call them population parameters.

Naturally, we do not know the values of these true parameters, and it is impos-
sible for us to ever know, since it would require that we weighed all possible
eggs that have existed or could have existed. In fact the true parameters of the
distribution N(µ, σ2) are unknown and will forever remain unknown.
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If we take a random sample of eggs from the population of egg weights, say
we make 10 observations, then we have x1, . . . , x10. We call this the observed sam-
ple or just sample. From the sample, we can calculate the sample mean, x̄. We
say that x̄ is an estimate of the true population mean µ (or just mean, see Remark
1.3). In general we distinguish estimates of the parameters from the parameters
themselves, by adding a hat (circumflex). For instance, when we use the sample
mean as an estimate of the mean, we may write µ̂ = x̄ for the estimate and µ for
the parameter, see the illustration of this process in Figure 1.1.

We denote parameters such as µ and σ2 by Greek letters. Therefore parame-
ter estimates are Greek letters with hats on them. Random variables such as
X are denoted by capital Roman letters. The observed values of the random
variables are denoted by lower case instead – we call them realizations of the ran-
dom variables. For example, the sample x1, . . . , x10 represents actually observed
numbers (e.g. the weights of 10 eggs), so they are not random and therefore in
lower case. If we consider a hypothetical sample it is yet unobserved and there-
fore random and denoted by, say, X1, . . . , Xn and therefore in capital letters, see
also Section 2.1.

To emphasize the difference, we say that X1, . . . , Xn is a random sample, while we
say that x1, . . . , xn is a sample taken at random; the observed sample is not random
when it is observed, but it was produced as a result of n random experiments.

A statistic is a function of the data, and it can represent both a fixed value from
an observed sample or a random variable from a random (yet unobserved) sam-
ple. For example sample average x̄ = 1

n ∑n
i=1 xi is a statistic computed from an

observed sample, while X̄ = 1
n ∑n

i=1 Xi is also a statistic, but it is considered
a function of a random (yet unobserved) sample. Therefore X̄ is itself a ran-
dom variable with a distribution. Similarly the sample variance S2 is a random
variable, while s2 is its realized value and just a number.

An estimator (not to be confused with an estimate) is a function that produces an
estimate. For example, µ is a parameter, µ̂ is the estimate and we use X̄ as an
estimator of µ. Here X̄ is the function that produces the estimate of µ from a
sample.

Learning from data is learning about parameters of distributions that describe
populations. For this process to be meaningful, the sample should in a mean-
ingful way be representative of the relevant population. One way to ensure that
this is the case is to make sure that the sample is taken completely at random
from the population, as formally defined here:
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Definition 3.12 Random sample

A random sample from an (infinite) population: A set of observations
X1, ..., Xn constitutes a random sample of size n from the infinite population
f (x) if:

1. Each Xi is a random variable whose distribution is given by f (x)

2. The n random variables are independent

It is a bit difficult to fully comprehend what this definition really amounts to
in practice, but in brief one can say that the observations should come from
the same population distribution, and that they must each represent truly new
information (the independence).

Remark 3.13

Throughout previous sections and the rest of this chapter we assume infinite
populations. Finite populations of course exists, but only when the sam-
ple constitutes a large proportion of the entire population, is it necessary to
adjust the methods we discuss here. This occurs relatively infrequently in
practice and we will not discuss such conditions.

3.1.4 When we cannot assume a normal distribution: the Central
Limit Theorem

The Central Limit Theorem (CLT) states that the sample mean of independent
identically distributed (i.i.d.) random variables converges to a normal distribu-
tion:
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Theorem 3.14 Central Limit Theorem (CLT)

Let X̄ be the sample mean of a random sample of size n taken from a popu-
lation with mean µ and variance σ2, then

Z =
X̄− µ

σ/
√

n
, (3-12)

is a random variable which distribution function approaches that of the
standard normal distribution, N(0, 12), as n → ∞. In other words, for large
enough n, it holds approximately that

X̄− µ

σ/
√

n
∼ N(0, 12). (3-13)

The powerful feature of the CLT is that, when the sample size n is large enough,
the distribution of the sample mean X̄ is (almost) independent of the distri-
bution of the population X. This means that the underlying distribution of a
sample can be disregarded when carrying out inference related to the mean.
The variance of the sample mean can be estimated from the sample and it can
be seen that as n increases the variance of the sample mean decreases, hence the
“accuracy” with which we can infer increases.
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Example 3.15 Central Limit Theorem in practice

# Number of simulated samples
k = 1000
# Number of observations in each sample
n = 1
# Simulate k samples with n observations
Xbar1 = stats.uniform.rvs(0,1, size=(k,n))
# Increase the number of observations in each sample
n = 2
Xbar2 = pd.DataFrame(stats.uniform.rvs(0,1, size=(k,n))).mean(axis=1)
# Increase the number of observations in each sample
n = 6
Xbar6 = pd.DataFrame(stats.uniform.rvs(0,1, size=(k,n))).mean(axis=1)
# Increase the number of observations in each sample
n = 30
Xbar30 = pd.DataFrame(stats.uniform.rvs(0,1, size=(k,n))).mean(axis=1)
# Plot the histograms
fig, axs = plt.subplots(2,2)
axs[0,0].hist(Xbar1, bins=50, range=[0,1], edgecolor=’black’, color=’blue’, alpha=0.7)
axs[0,1].hist(Xbar2, bins=50, range=[0,1], edgecolor=’black’, color=’blue’, alpha=0.7)
axs[1,0].hist(Xbar6, bins=50, range=[0,1], edgecolor=’black’, color=’blue’, alpha=0.7)
axs[1,1].hist(Xbar30, bins=50, range=[0,1], edgecolor=’black’, color=’blue’, alpha=0.7)
plt.tight_layout()
plt.show()
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Due to the amazing result of the Central Limit Theorem 3.14 many expositions
of classical statistics provides a version of the confidence interval based on the
standard normal quantiles rather than the t-quantiles

x̄± z1−α/2 ·
s√
n

. (3-14)

We present it here only as an interesting limit situation of the t-based interval in
Method 3.9.

For large samples, the standard normal distribution and t-distribution are al-
most the same, so in practical situations, it doesn’t matter whether the normal
based or the t-based confidence interval (CI) is used. Since the t-based inter-
val is also valid for small samples when a normal distribution is assumed,
we recommend that the t-based interval in Method 3.9 is used in all situa-
tions. This recommendation also has the advantage that the SciPy-function
stats.t.interval, which produces the t-based interval, can be used in all cases.

How large should the sample then be in a non-normal case to ensure the validity
of the interval? No general answer can be given, but as a rule of thumb we
recommend n ≥ 30.

When we have a small sample for which we cannot or will not make a nor-
mality assumption, we have not yet presented a valid CI method. The classical
solution is to use the so-called non-parametric methods. However, in the next
chapter we will present the more widely applicable simulation or re-sampling
based techniques.

3.1.5 Repeated sampling interpretation of confidence intervals

In this section we show that 95% of the 95% confidence intervals we make will
cover the true value in the long run. Or, in general 100(1− α)% of the 100(1−
α)% confidence intervals we make will cover the true value in the long run. For
example, if we make 100 95% CI we cannot guarantee that exactly 95 of these
will cover the true value, but if we repeatedly make 100 95% CIs then on average
95 of them will cover the true value.

Example 3.16 Simulating many confidence intervals

To illustrate this with a simulation example, then we can generate 50 random
N(1, 12) distributed numbers and calculate the t-based CI given in Method 3.9, and
then repeated this 1000 times to see how many times the true mean µ = 1 is covered.
The following code illustrates this:
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# Simulate 1000 samples each with 50 observations
x = pd.DataFrame(stats.norm.rvs(loc=1,scale=1,size=(1000,50)))
# Calculate a 95% CI from each sample
CIs = stats.t.interval(0.95,df=50-1,loc=x.mean(axis=1),
scale=x.std(ddof=1,axis=1)/np.sqrt(50))
# Count how often 1 is covered
print(np.sum((CIs[0] <= 1) & (CIs[1] >= 1)))

954

Hence in 954 of the 1000 repetitions (i.e. 95.4%) the CI covered the true value. If
we repeat the whole simulation over, we would obtain 1000 different samples and
therefore 1000 different CIs. Again we expect that approximately 95% of the CIs will
cover the true value µ = 1.

The result that we arrived at by simulation in the previous example can also be
derived mathematically. Since

T =
X̄− µ

S/
√

n
∼ t(n− 1),

where t is the t-distribution with n− 1 degrees of freedom, it holds that

1− α = P
(
−t1−α/2 <

X̄− µ

S/
√

n
< t1−α/2

)
,

which we can rewrite as

= P
(

X̄− t1−α/2
S√
n
< µ < X̄ + t1−α/2

S√
n

)
.

Thus, the probability that the interval with limits

X̄± t1−α/2
S√
n

, (3-15)

covers the true value µ is exactly 1− α. One thing to note is that the only dif-
ference between the interval above and the interval in Method 3.9, is that the
interval above is written with capital letters (simply indicating that it calculated
with random variables rather than with observations).

This shows exactly that 100(1− α)% of the 100(1− α)% confidence interval we
make will contain the true value in the long run.
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3.1.6 Confidence interval for the variance

In previous sections we discussed how to calculate a confidence interval for the
mean. In this section we discuss how to calculate a confidence interval for the
variance or the standard deviation.

We will assume that the observations come from a normal distribution through-
out this section, and we will not present any methods that are valid beyond this
assumption. While the methods for the sample mean in the previous sections
are not sensitive to (minor) deviations from the normal distribution, the meth-
ods discussed in this section for the sample variance rely much more heavily on
the correctness of the normal distribution assumption.

Example 3.17 Tablet production

In the production of tablets, an active matter is mixed with a powder and then the
mixture is formed to tablets. It is important that the mixture is homogeneous, such
that each tablet has the same strength.

We consider a mixture (of the active matter and powder) from where a large amount
of tablets is to be produced.

We seek to produce the mixtures (and the final tablets) such that the mean content of
the active matter is 1 mg/g with the smallest variance possible. A random sample is
collected where the amount of active matter is measured. It is assumed that all the
measurements follow a normal distribution.

The variance estimator, that is, the formula for the variance seen as a random
variable, is

S2 =
1

n− 1

n

∑
i=1

(Xi − X̄)2, (3-16)

where n is the number of observations, Xi is observation number i where i =
1, . . . , n, and X̄ is the estimator of the mean of X.

The (sampling) distribution of the variance estimator is the χ2-distribution dis-
tribution: let S2 be the variance of a sample of size n from a normal distribution
with variance σ2, then

χ2 =
(n− 1)S2

σ2 , (3-17)

is a stochastic variable following the χ2-distribution with v = n− 1 degrees of
freedom.
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The χ2-distribution, as any other distribution, has a probability density func-
tion. It is a non-symmetric distribution on the positive axis. It is a distribution
of squared normal random variables, for more details see Section 2.10.1. An
example of a χ2-distribution is given in the following:

Example 3.18 The χ2-distribution

The density of the χ2-distribution with 9 degrees of freedom is:

# The chi-square-distribution with df=9 (the density)
x = np.linspace(0, 35, 1000)
plt.plot(x,stats.chi2.pdf(x,df=9))
plt.ylabel(’Density’,fontsize=12)
plt.tight_layout()
plt.show()
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So, the χ2-distributions are directly available in Python, via the SciPy pack-
age as seen for the other probability distributions presented in the distribution
overview, see Appendix A.3.

Hence, we can easily work with χ2-distributions in practice. As indicated there
is a different χ2-distribution for each n.
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Method 3.19 Confidence interval for the variance/standard devia-
tion

A 100(1− α)% confidence interval for the variance σ2 is[
(n− 1)s2

χ2
1−α/2

,
(n− 1)s2

χ2
α/2

]
, (3-18)

where the quantiles come from a χ2-distribution with ν = n− 1 degrees of
freedom.

A 100(1− α)% confidence interval for the standard deviation σ is[√
(n− 1)s2

χ2
1−α/2

,

√
(n− 1)s2

χ2
α/2

]
. (3-19)

Note: The confidence intervals for the variance and standard deviations are
generally non-symmetric as opposed to the t-based interval for the mean µ.

Example 3.20 Tablet production

A random sample of n = 20 tablets is collected and from this the mean is estimated
to x̄ = 1.01 and the variance to s2 = 0.072. Let us find the 95%-confidence interval
for the variance. To apply the method above we need the 0.025 and 0.975 quantiles
of the χ2-distribution with ν = 20− 1 = 19 degrees of freedom

χ2
0.025 = 8.907, χ2

0.975 = 32.85,

which we get from Python:

# Quantiles of the chi-square distribution:
print(stats.chi2.ppf([0.025,0.975],df=19))

[ 8.907 32.852]

Hence the confidence interval is[
19 · 0.072

32.85
,

19 · 0.072

8.907

]
≈ [0.00283, 0.0105],

and for the standard deviation the confidence interval is[√
0.002834,

√
0.01045

]
≈ [0.053, 0.102] .
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3.1.7 Hypothesis testing, evidence, significance and the p-value

Example 3.21 Sleeping medicine

In a study the aim is to compare two kinds of sleeping medicine A and B. 10 test
persons tried both kinds of medicine and the following 10 DIFFERENCES between
the two medicine types were measured (in hours):

Person x = Beffect - Aeffect
1 1.2
2 2.4
3 1.3
4 1.3
5 0.9
6 1.0
7 1.8
8 0.8
9 4.6

10 1.4

For Person 1, Medicine B provided 1.2 sleep hours more than Medicine A, etc.

Our aim is to use these data to investigate if the two treatments are different in their
effect on length of sleep. We therefore let µ represent the mean difference in sleep
length. In particular we will consider the so-called null hypothesis

H0 : µ = 0,

which states that there is no difference in sleep length between the A and B Medicines.

If the observed sample turns out to be not very likely under this null hypothesis, we
conclude that the null hypothesis is unlikely to be true.

First we compute the sample mean

µ̂ = x̄1 = 1.67.

As of now, we don’t know if this number is particularly small or large. If the true
mean difference is zero, would it be unlikely to observe a mean difference this large?
Could it be due to just random variation? To answer this question we compute the
probability of observing a sample mean that is 1.67 or further from 0 – in the case
that the true mean difference is in fact zero. This probability is called a p-value. If
the p-value is small (say less than 0.05), we conclude that the null hypothesis isn’t
true. If the p-value is not small (say larger than 0.05), we conclude that we haven’t
obtained sufficient evidence to falsify the null hypothesis.
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After some computations that you will learn to perform later in this section, we
obtain a p-value

p-value ≈ 0.00117,

which indicates quite strong evidence against the null hypothesis. As a matter of
fact, the probability of observing a mean difference as far from zero as 1.67 or further
is only ≈ 0.001 (one out of thousand) and therefore very small.

We conclude that the null hypothesis is unlikely to be true as it is highly incompat-
ible with the observed data. We say that the observed mean µ̂ = 1.67 is statistically
significantly different from zero (or simply significant implying that it is different from
zero). Or that there is a significant difference in treatment effects of B and A, and we may
conclude that Medicine B makes patients sleep significantly longer than Medicine
A.
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p < 0.001 Very strong evidence against H0
0.001 ≤ p < 0.01 Strong evidence against H0
0.01 ≤ p < 0.05 Some evidence against H0
0.05 ≤ p < 0.1 Weak evidence against H0

p ≥ 0.1 Little or no evidence against H0

Table 3.1: A way to interpret the evidence for a given p-value.

The p-value

Definition 3.22 The p-value

The p-value is the probability of obtaining a test statistic that is at least as
extreme as the test statistic that was actually observed. This probability is
calculated under the assumption that the null hypothesis is true.

Interpretations of a p-value:

1. The p-value measures evidence

2. The p-value measures extremeness/unusualness of the data under the
null hypothesis (“under the null hypothesis” means “assuming the null
hypothesis is true”)

The p-value is used as a general measure of evidence against a null hypothesis:
the smaller the p-value, the stronger the evidence against the null hypothesis
H0. A typical strength of evidence scale is given in Table 3.1.

As indicated, the definition and interpretations above are generic in the sense
that they can be used for any kind of hypothesis testing in any kind of setup.
In later sections and chapters of this material, we will indeed encounter many
different such setups. For the specific setup in focus here, we can now give the
key method:
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Method 3.23 The one-sample t-test statistic and the p-value

For a (quantitative) one sample situation, the p-value is given by

p-value = 2 · P(T > |tobs|), (3-20)

where T follows a t-distribution with (n− 1) degrees of freedom.
The observed value of the test statistics to be computed is

tobs =
x̄− µ0

s/
√

n
, (3-21)

where µ0 is the value of µ under the null hypothesis

H0 : µ = µ0. (3-22)

The t-test and the p-value will in some cases be used to formalize actual decision
making and the risks related to it:

Definition 3.24 The hypothesis test

We say that we carry out a hypothesis test when we decide against a null
hypothesis or not, using the data.

A null hypothesis is rejected if the p-value, calculated after the data has been
observed, is less than some α, that is if the p-value < α, where α is some pre-
specified (so-called) significance level. And if not, then the null hypothesis is
said to be accepted.

Remark 3.25

Often chosen significance levels α are 0.05, 0.01 or 0.001 with the former
being the globally chosen default value.
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Remark 3.26

A note of caution in the use of the word accepted is in place: this should
NOT be interpreted as having proved anything: accepting a null hypothesis
in statistics simply means that we could not prove it wrong! And the reason
for this could just potentially be that we did not collect sufficient amount of
data, and acceptance hence proofs nothing at its own right.

Example 3.27 Sleeping medicine

Continuing from Example 3.21, we now illustrate how to compute the p-value using
Method 3.23.

# Enter sleep difference observations
x = np.array([1.2, 2.4, 1.3, 1.3, 0.9, 1.0, 1.8, 0.8, 4.6, 1.4])
n = len(x)
# Compute the tobs - the observed test statistic
tobs = (x.mean() - 0)/(x.std(ddof=1) / np.sqrt(n))
print(tobs)

4.671645978656775

# Compute the p-value as a tail-probability in the t-distribution
pvalue = 2 * (1-stats.t.cdf(abs(tobs),df=n-1))
print(pvalue)

0.0011658764685527068

Naturally, a function in Python can do this for us (the results differ slightly due
to numerical inaccuracies). This function can also be used to calculate confidence
intervals:
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stats.ttest_1samp(x,popmean=0).pvalue

np.float64(0.0011658764685528319)

stats.ttest_1samp(x,popmean=0).confidence_interval()

ConfidenceInterval(low=np.float64(0.8613337442036719), high=np.float64(2.4786662557963277))

The confidence interval and the p-value supplements each other, and often both
the confidence interval and the p-value are reported. The confidence interval
covers those values of the parameter that we accept given the data, while the
p-value measures the extremeness of the data if the null hypothesis is true.

Example 3.28 Sleeping medicine

In the sleep medicine example the 95% confidence interval is

[0.86, 2.48] ,

so based on the data these are the values for the mean sleep difference of Medicine
B versus Medicine A that we accept can be true. Only if the data is so extreme
(i.e. rarely occurring) that we would only observe it 5% of the time the confidence
interval does not cover the true mean difference in sleep.

The p-value for the null hypothesis µ = 0 was ≈ 0.001 providing strong evidence
against the correctness of the null hypothesis.

If the null hypothesis was true, we would only observe this large a difference in
sleep medicine effect levels in around one out of a thousand times. Consequently
we conclude that the null hypothesis is unlikely to be true and reject it.

Statistical significance

The word significance can mean importance or the extent to which something matters
in our everyday language. In statistics, however, it has a very particular mean-
ing: if we say that an effect is significant, it means that the p-value is so low that
the null hypothesis stating no effect has been rejected at some significance level α.
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Definition 3.29 Significant effect

An effect is said to be (statistically) significant if the p-value is less than the
significance level α. a

aOften, α = 0.05 is adopted.

At this point an effect would amount to a µ-value different from µ0. In other
contexts we will see later, effects can be various features of interest to us.

Example 3.30 Statistical significance

Consider the following two situations:

1. A researcher decides on a significance level of α = 0.05 and obtains p-value =

0.023. She therefore concludes that the effect is statistically significant

2. Another researcher also adopts a significance level of α = 0.05, but obtains
p-value = 0.067. He concludes that the effect was not statistically significant

From a binary decision point of view the two researchers couldn’t disagree more.
However, from a scientific and more continuous evidence quantification point of
view there is not a dramatic difference between the findings of the two researchers.

In daily statistical and/or scientific jargon the word ”statistically” will often be
omitted, and when results then are communicated as significant further through
media or other places, it gives the risk that the distinction between the two
meanings gets lost. At first sight it may appear unimportant, but the big dif-
ference is the following: sometimes a statistically significant finding can be so
small in real size that it is of no real importance. If data collection involves very
big data sizes one may find statistically significant effects that for no practical
situations matter much or anything at all.

The null hypothesis

The null hypothesis most often expresses the status quo or that “nothing is hap-
pening”. This is what we have to believe before we perform any experiments
and observe any data. This is what we have to accept in the absence of any
evidence that the situation is otherwise. For example the null hypothesis in the
sleep medicine examples states that the difference in sleep medicine effect level
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Acceptance
Rejection Rejection

t0.025 t0.9750

Figure 3.1: The 95% critical value. If tobs falls in the pink area we would reject,
otherwise we would accept

is unchanged by the treatment: this is what we have to accept until we obtain
evidence otherwise. In this particular example the observed data and the statis-
tical theory provided such evidence and we could conclude a significant effect.

The null hypothesis has to be falsifiable. This means that it should be possible to
collect evidence against it.

Confidence intervals, critical values and significance levels

A hypothesis test, that is, making the decision between rejection and acceptance of
the null hypothesis, can also be carried out without actually finding the p-value.
As an alternative one can use the so-called critical values, that is the values of the
test-statistic which matches exactly the significance level, see Figure 3.1:

Definition 3.31 The critical values

The (1− α)100% critical values for the one-sample t-test are the α/2- and
1− α/2-quantiles of the t-distribution with n− 1 degrees of freedom

tα/2 and t1−α/2. (3-23)
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Method 3.32 The one-sample hypothesis test by the critical value

A null hypothesis is rejected if the observed test-statistic is more extreme than
the critical values

If |tobs| > t1−α/2 then reject, (3-24)

otherwise accept.

The confidence interval covers the acceptable values of the parameter given the
data:

Theorem 3.33 Confidence interval for µ

We consider a (1− α) · 100% confidence interval for µ

x̄± t1−α/2 ·
s√
n

. (3-25)

The confidence interval corresponds to the acceptance region for H0 when
testing the hypothesis

H0 : µ = µ0. (3-26)
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Remark 3.34

The proof of this theorem is almost straightforward: a µ0 inside the confi-
dence interval will fulfil that

|x̄− µ0| < t1−α/2 ·
s√
n

, (3-27)

which is equivalent to

|x̄− µ0|
s√
n

< t1−α/2, (3-28)

and again to

|tobs| < t1−α/2, (3-29)

which then exactly states that µ0 is accepted, since the tobs is within the
critical values.

The alternative hypothesis

Some times we may in addition to the null hypothesis, also explicitly state an
alternative hypothesis. This completes the framework that allows us to control the
rates at which we make correct and wrong conclusions in light of the alternative.

The alternative hypothesis is

H1 : µ 6= µ0. (3-30)

This is sometimes called the two-sided (or non-directional) alternative hypoth-
esis, because also one-sided (or directional) alternative hypothesis occur. How-
ever, the one-sided setup is not included in the book apart from a small discus-
sion below.

Example 3.35 Sleeping medicine – Alternative hypothesis

Continuing from Example 3.21 we can now set up the null hypothesis and the alter-
native hypothesis together

H0 : µ = 0

H1 : µ 6= 0.
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Which means that we have exactly the same setup just formalized by adding the
alternative hypothesis. The conclusion is naturally exactly the same as in before.

A generic approach for tests of hypotheses is:

1. Formulate the hypotheses and choose the level of significance α (choose
the "risk-level")

2. Calculate, using the data, the value of the test statistic

3. Calculate the p-value using the test statistic and the relevant sampling
distribution, compare the p-value and the significance level α, and finally
make a conclusion
or
Compare the value of the test statistic with the relevant critical value(s)
and make a conclusion

Combining this generic hypothesis test approach with the specific method boxes
of the previous section, we can now below give a method box for the one-
sample t-test. This is hence a collection of what was presented in the previous
section:



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 33

Method 3.36 The level α one-sample t-test

1. Compute tobs using Equation (3-21)

tobs =
x̄− µ0

s/
√

n

2. Compute the evidence against the null hypothesis

H0 : µ = µ0, (3-31)

vs. the alternative hypothesis

H1 : µ 6= µ0, (3-32)

by the

p-value = 2 · P(T > |tobs|), (3-33)

where the t-distribution with n− 1 degrees of freedom is used

3. If the p-value < α, we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±t1−α/2:
if |tobs| > t1−α/2 we reject H0, otherwise we accept H0

The so-called one-sided (or directional) hypothesis setup, where the alternative
hypothesis is either “less than” or “greater than”, is opposed to the previous
presented two-sided (or non-directional) setup, with a “different from” alter-
native hypothesis. In most situations the two-sided should be applied, since
when setting up a null hypothesis with no knowledge about in which direction
the outcome will be, then the notion of “extreme” is naturally in both directions.
However, in some situations the one-sided setup makes sense to use. As for ex-
ample in pharmacology where concentrations of drugs are studied and in some
situations it is known that the concentration can only decrease from one time
point of measurement to another (after the peak concentration). In such case a
“less than” is the only meaningful alternative hypothesis – one can say that na-
ture really has made the decision for us in that: either the concentration has not
changed (the null hypothesis) or it has dropped (the alternative hypothesis). In
other cases, e.g. more from the business and/or judicial perspective, one-sided
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hypothesis testing come up when for example a claim about the performance of
some product is tested.

The one-sided “less than” hypothesis setup is: compute the evidence against
the null hypothesis vs. the one-sided alternative hypothesis

H0 : µ ≥ µ0 (3-34)
H1 : µ < µ0, (3-35)

by the

p-value = P(T < tobs). (3-36)

and equivalently for the “greater than” setup

H0 : µ ≤ µ0 (3-37)
H1 : µ > µ0, (3-38)

by the

p-value = P(T > tobs). (3-39)

In both cases: if p-value < α: We reject H0, otherwise we accept H0.

Note that there are no one-sided hypothesis testing involved in the exercises.

Errors in hypothesis testing

When testing statistical hypotheses, two kind of errors can occur:

Type I: Rejection of H0 when H0 is true

Type II: Non-rejection (acceptance) of H0 when H1 is true

Example 3.37 Ambulance times

An ambulance company claims that on average it takes 20 minutes from a telephone
call to their switchboard until an ambulance reaches the location.

We might have some measurements (in minutes): 21.1, 22.3, 19.6, 24.2, ...

If our goal is to show that on average it takes longer than 20 minutes, the null- and
the alternative hypotheses are

H0 : µ = 20,

H1 : µ 6= 20.



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 35

What kind of errors can occur?

Type I: Reject H0 when H0 is true, that is we mistakenly conclude that it takes longer
(or shorter) than 20 minutes for the ambulance to be on location

Type II: Not reject H0 when H1 is true, that is we mistakenly conclude that it takes
20 minutes for the ambulance to be on location

Example 3.38 Court of law analogy

A man is standing in a court of law accused of criminal activity.

The null- and the alternative hypotheses are

H0 : The man is not guilty,

H1 : The man is guilty.

We consider a man not guilty until evidence beyond any doubt proves him guilty.
This would correspond to an α of basically zero.

Clearly, we would prefer not to do any kinds of errors, however it is a fact of
life that we cannot avoid to do so: if we would want to never do a Type I error,
then we would never reject the null hypothesis, which means that we would
e.g. never conclude that one medical treatment is better than another, and thus,
that we would (more) often do a Type II error, since we would never detect
when there was a significance effect.

For the same investment (sample size n), we will increase the risk of a Type II
error by enforcing a lower risk of a Type I error. Only by increasing n we can
lower both of them, but to get both of them very low can be extremely expensive
and thus such decisions often involve economical considerations.

The statistical hypothesis testing framework is a way to formalize the handling
of the risk of the errors we may make and in this way make decisions in an
enlightened way knowing what the risks are. To that end we define the two
possible risks as

P("Type I error") = α,
P("Type II error") = β.

(3-40)

This notation is globally in statistical literature. The name choice for the Type I
error is in line with the use of α for the significance level, as:
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Theorem 3.39 Significance level and Type I error

The significance level α in hypothesis testing is the overall Type I risk

P("Type I error") = P("Rejection of H0 when H0 is true") = α. (3-41)

So controlling the Type I risk is what is most commonly apparent in the use of
statistics. Most published results are results that became significant, that is, the
p-value was smaller than α, and hence the relevant risk to consider is the Type I
risk.

Controlling/dealing with the Type II risk, that is: how to conclude on an exper-
iment/study in which the null hypothesis was not rejected (ı.e. no significant
effect was found) is not so easy, and may lead to heavy discussions if the non-
findings even get to the public. To which extent is a non-finding an evidence of
the null hypothesis being true? Well, in the outset the following very important
saying makes the point:

Remark 3.40

Absence of evidence is NOT evidence of absence!

Or differently put:
Accepting a null hypothesis is NOT a statistical proof of the null hypothesis
being true!

The main thing to consider here is that non-findings (non-significant results)
may be due to large variances and small sample sizes, so sometimes a non-
finding is indeed just that we know nothing. In other cases, if the sample sizes
were high, a non-finding may actually, if not proving an effect equal to zero,
which is not really possible, then at least indicate with some confidence that the
possible effect is small or even very small. The confidence interval is a more
clever method to use here, since the confidence interval will show the precision
of what we know, whether it includes the zero effect or not.

In Section 3.3 we will use a joint consideration of both error types to formalize
the planning of suitably sized studies/experiments.
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3.1.8 Assumptions and how to check them

The t-tests that have been presented above are based on some assumptions
about the sampling and the population. In Theorem 3.3 the formulations are
that the random variables X1, . . . , Xn are independent and identically normally
distributed: Xi ∼ N(µ, σ2). In this statement there are two assumptions:

• Independent observations

• Normal distribution

The assumption about independent observations can be difficult to check. It
means that each observation must bring a unique new amount of information to
the study. Independence will be violated if some measurements are not on ran-
domly selected units and share some feature – returning to the student height
example: we do not want to include twins or families in general. Having a sam-
ple of n = 20 heights, where 15 of them stem from a meeting with a large family
group would not be 20 independent observations. The independence assump-
tion is mainly checked by having information about the sampling procedure.

The assumption about normality can be checked graphically using the actual
sample at hand.

Example 3.41 Student heights

We will return to the height of the ten students from example 3.1. If we want to
check whether the sample of heights could come from a normal distribution then
we could plot a histogram and look for a symmetric bell-shape:

# The height sample
x = np.array([168,161,167,179,184,166,198,187,191,179])

# Using histograms
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
ax1.hist(x, bins=2, edgecolor=’black’, color=’blue’, alpha=0.7)
ax1.set(xlabel=’Height’, ylabel=’Frequency’)
ax2.hist(x, bins=4, edgecolor=’black’, color=’blue’, alpha=0.7)
ax2.set(xlabel=’Height’, ylabel=’Frequency’)
ax3.hist(x, bins=8, edgecolor=’black’, color=’blue’, alpha=0.7)
ax3.set(xlabel=’Height’, ylabel=’Frequency’)
plt.tight_layout()
plt.show()
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However, as we can see the histograms change shape depending on the number of
breaks. Instead of using histograms, one can plot empirical cumulative distribution
(see 1.6.2) and compare it with the best fitting normal distribution, in this case N(µ̂ =

178, σ̂2 = 12.212):

# Plot the empirical cdf
ecdf = stats.ecdf(x)
ax = plt.subplot()
ecdf.cdf.plot(ax)
ax.set(xlabel=’Height’, ylabel=’Empirical CDF’)
# Plot a normal cdf
y = np.linspace(159,201, 1000)
plt.plot(y,stats.norm.cdf(y,loc=x.mean(),
scale=x.std(ddof=1)),color="red")
plt.tight_layout()
plt.show()
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In the accumulated distribution plot it is easier to see how close the distributions are
– compared to in the density histogram plot. However, we will go one step further
and do the q-q plot: The observations (sorted from smallest to largest) are plotted
against the expected quantiles – from the same normal distribution as above. If the
observations are normally distributed then the observed are close to the expected
and this plot is close to a straight line. In Python we can generate this plot by the
following:

# A manual normal QQ-plot (normal Quantile-Quantile-plot)
# Calculate manual empirical CDF-values (p) for the observations in the sample
n = len(x)
p = np.linspace(0.5/n,1-0.5/n,n)
# Plot the theoretical normal quantiles associated with p (x-axis) against
# the observations. Note that the observations function as the sample
# quantiles. Thus, we compare the theoretical with the sample quantiles.
plt.scatter(stats.norm.ppf(p),np.sort(x))
# Plot straight line thorugh (TQ1,SQ1) and (TQ3,SQ3).
# T: Theoretical - S: Sample
TQ1 = stats.norm.ppf(0.25)
TQ3 = stats.norm.ppf(0.75)
SQ1 = np.quantile(x,0.25,method=’averaged_inverted_cdf’)
SQ3 = np.quantile(x,0.75,method=’averaged_inverted_cdf’)
plt.plot((TQ1,TQ3),(SQ1,SQ3),’yo’)
plt.axline((TQ1,SQ1),(TQ3,SQ3),color="red")
# Notice that this not generate the same plot as the standard functions
plt.xlabel(’Theoretical quantiles’,fontsize=12)
plt.ylabel(’Sample quantiles’,fontsize=12)
plt.title(’Manual normal QQ-plot’,fontsize=16)
plt.tight_layout()
plt.show()
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In the ideal normal case, the observations vs. the expected quantiles in the best
possible normal distribution will be on a straight line, here plotted with the line
argument of the qqplot-function from the statsmodels package:

# Simulate 100 observations
np.random.seed(31415)
simx = stats.norm.rvs(loc=x.mean(), scale=x.std(ddof=1), size=100)
# Do the normal QQ-plot and QQ-line with standard functions
sm.qqplot(simx,line="q",a=1/2)
plt.tight_layout()
plt.show()
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Note that the inbuilt functions do exactly the same as the Python code generating
the first q-q plot as described in Method 3.42.

In this example the points are close to a straight line and we can assume that the
normal distribution holds. It can, however, be difficult to decide whether the plot
is close enough to a straight line, so we write a function that generates one q-q plot
of the observations and eight q-q plots with data simulated from a standard normal
distribution. It is then possible to visually compare the plot based on the observed
data to the simulated data and see whether the distribution of the observations is
"worse" than they should be.
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When we look at the nine plots then the original data are plotted in the frame with
the red border. Comparing the observed data to the simulated data the straight
line for the observed data is no worse than some of the simulated data, where the
normality assumption is known to hold. So we conclude here that we apparently
have no problem in assuming the normal distribution for these data.
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Method 3.42 The Normal q-q plot

The ordered observations x(1), . . . , x(n), called the sample quantiles, are plot-
ted versus a set of expected normal quantiles zp1 , . . . , zpn . If the points are
not systematically deviating from a line, we accept the normal distribution
assumption. The evaluation of this can be based on some simulations of a
sample of the same size.

The usual definition of p1, . . . , pn to be used for finding the expected normal
quantiles is

pi =
i− 0.5

n
, i = 1, . . . , n. (3-42)

Hence, simply the equally distanced points between 0.5/n and 1− 0.5/n.
This formula is suitable for samples with n > 10 and can be used in Python
by specifying qqplot(...,a=1/2). For samples with n ≤ 10, the formula

pi =
i− 3/8
n + 1/4

, i = 1, . . . , n, (3-43)

which can be used in Python by specifying qqplot(...,a=3/8), is pre-
ferred.

Example 3.43 Student heights

An example of how the expected normal quantile is calculated in Python can be
seen if we take the second smallest height 166. There are 2 observations ≤ 166,
so 166 = x(2) can be said to be the observed 2−3/8

10.25 = 0.1585 quantile (where we
use the formula for n ≤ 10). The 0.1585 quantile in the normal distribution is
stats.norm.ppf(0.1585,loc=0,scale=1) = −1.00 and the point (−1.00, 166) can
be seen on the q-q plot above.

3.1.9 Transformation towards normality

In the above we looked at methods to check for normality. When the data are
not normally distributed it is often possible to choose a transformation of the
sample, which improves the normality.

When the sample is positive with a long tail or a few large observations then the
most common choice is to apply a logarithmic transformation, log(x). The log-
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transformation will make the large values smaller and also spread the observa-
tions on both positive and negative values. Even though the log-transformation
is the most common there are also other possibilities such as

√
x or 1

x for making
large values smaller, or x2 and x3 for making large values larger.

When we have transformed the sample we can use all the statistical analyse we
want. It is important to remember that we are now working on the transformed
scale (e.g. the mean and its confidence interval is calculated for log(x)) and
perhaps it will be necessary to back-transform to the original scale.

Example 3.44 Radon in houses

In an American study the radon level was measured in a number of houses. The
Environmental Protection Agency’s recommended action level is ≥ 4 pCi/L. Here
we have the results for 20 of the houses (in pCi/L):

House 1 2 3 4 5 6 7 8 9 10
Radon level 2.4 4.2 1.8 2.5 5.4 2.2 4.0 1.1 1.5 5.4
House 11 12 13 14 15 16 17 18 19 20
Radon level 6.3 1.9 1.7 1.1 6.6 3.1 2.3 1.4 2.9 2.9

The sample mean, median and std. deviance is: x̄ = 3.04, Q2 = 2.45 and sx = 1.72.

We would like to see whether these observed radon levels could be thought of as
coming from a normal distribution. To do this we will plot the data:

# Reading in the sample
radon = np.array([2.4, 4.2, 1.8, 2.5, 5.4, 2.2, 4.0, 1.1, 1.5, 5.4,

6.3, 1.9, 1.7, 1.1, 6.6, 3.1, 2.3, 1.4, 2.9, 2.9])

# A histrogram and normal QQ-plot
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(radon, bins=6, edgecolor=’black’, color=’blue’, alpha=0.7)
ax1.set(title="Histogram of radon levels",xlabel="Radon level",ylabel="Frequency")
sm.qqplot(radon,line="q",a=1/2,ax=ax2)
ax2.set(title="Normal QQ-plot")
plt.tight_layout()
plt.show()



Chapter 3 3.1 LEARNING FROM ONE-SAMPLE QUANTITATIVE DATA 44

2 4 6
Radon level

0

2

4

6

Fr
eq

ue
nc

y
Histogram of radon levels

2 1 0 1 2
Theoretical Quantiles

0

2

4

6

Sa
m

pl
e 

Qu
an

til
es

Normal QQ-plot

From both plots we see that the data are positive and right skewed with a few large
observations. Therefore a log-transformation is applied:

# Transform using the natural logarithm
logRadon = np.log(radon)

# A histrogram and normal QQ-plot
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(logRadon, bins=4, edgecolor=’black’, color=’blue’, alpha=0.7)
ax1.set(title="Histogram of log(radon levels)",xlabel="log(radon level)",ylabel="Frequency")
sm.qqplot(logRadon,line="q",a=1/2,ax=ax2)
ax2.set(title="Normal QQ-plot")
plt.tight_layout()
plt.show()
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As we had expected the log-transformed data seem to be closer to a normal distri-
bution.
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We can now calculate the mean and 95% confidence interval for the log-transformed
data. However, we are perhaps not interested in the mean of the log-radon levels,
then we have to back-transform the estimated mean and confidence interval using
exp(x). When we take the exponential of the estimated mean, then this is no longer
a mean but a median on the original pCi/L scale. This gives a good interpretation,
as medians are useful when the distributions are not symmetric.

# A confidence interval and t-test
n = len(logRadon)
test = stats.ttest_1samp(logRadon,popmean=0)
print(test.statistic,test.pvalue,test.df)

7.793651876947492 2.46529449526264e-07 19

CI = stats.ttest_1samp(logRadon,popmean=0).confidence_interval(0.95)
print(CI)

ConfidenceInterval(low=np.float64(0.7054264972507451), high=np.float64(1.2234307147950183))

# Alternatively, the CI can be obtained as
CI = stats.t.interval(0.95,df=n-1,loc=logRadon.mean(),
scale=logRadon.std(ddof=1)/np.sqrt(n))
print(CI)

(np.float64(0.7054264972507451), np.float64(1.2234307147950183))

# Back transform to original scale, now we get the median!
# This is a special case: In the lognormal distribution,
# the median coincides with the geometric mean value.
print(np.exp(logRadon.mean()))

2.623288297019726

# And the confidence interval on the original scale
print(np.exp(CI))

[2.025 3.399]
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From the Python code we see that the mean log-radon level is 0.96 (95% CI: 0.71 to
1.22). On the original scale the estimated median radon level is 2.6 pCi/L (95% CI:
2.0 to 3.4).

Theorem 3.45 Transformations and quantiles

In general, the data transformations discussed in this section will preserve
the quantiles of the data. Or more precisely, if f is a data transformation
function (an increasing function), then

The pth quantile of f (Y) = f (The pth quantile of Y). (3-44)

The consequence of this theorem is that confidence limits on one scale trans-
form easily to confidence limits on another scale even though the transforming
function is non-linear.
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3.2 Learning from two-sample quantitative data

In this section the setup, where we can learn about the difference between the
means from two populations, is presented. This is very often a setup encoun-
tered in most fields of science and engineering: compare the quality of two
products, compare the performance of two groups, compare a new drug to a
placebo and so on. One could say, that it should be called a two-population
setup, since it is really two populations (or groups) which are compared by tak-
ing a sample from each, however it is called a two-sample setup (probably it
sounds better to say).

First, the two-sample setup is introduced with an example and then methods
for confidence intervals and tests are presented.

Example 3.46 Nutrition study

In a nutrition study the aim is to investigate if there is a difference in the energy
usage for two different types of (moderately physically demanding) work. In the
study, the energy usage of 9 nurses from hospital A and 9 (other) nurses from hos-
pital B have been measured. The measurements are given in the following table in
mega Joule (MJ):

Hospital A Hospital B
7.53 9.21
7.48 11.51
8.08 12.79
8.09 11.85

10.15 9.97
8.40 8.79

10.88 9.69
6.13 9.68
7.90 9.19

Our aim is to assess the difference in energy usage between the two groups of nurses.
If µA and µB are the mean energy expenditures for nurses from hospital A and B,
then the estimates are just the sample means

µ̂A = x̄A = 8.293,

µ̂B = x̄B = 10.298.

To assess the difference in means, δ = µB − µA, we could consider the confidence
interval for δ = µB − µA. Clearly, the estimate for the difference is the difference of
the sample means, δ̂ = µ̂B − µ̂A = 2.005.
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The 95% confidence interval is

2.005± 1.412 = [0.59, 3.42],

which spans the mean differences in energy expenditure that we find acceptable
based on the data. Thus we do not accept that the mean difference could be zero.

The interval width, given by 1.41, as we will learn below, comes from a simple com-
putation using the two sample standard deviations, the two sample sizes and a t-
quantile.

We can also compute a p-value to measure the evidence against the null hypothesis
that the mean energy expenditures are the same. Thus we consider the following
null hypothesis

H0 : δ = 0.

Since the 95% confidence interval does not cover zero, we already know that the p-
value for this significance test will be less than 0.05. In fact it turns out that the
p-value for this significance test is 0.0083 indicating strong evidence against the
null hypothesis that the mean energy expenditures are the same for the two nurse
groups. We therefore have strong evidence that the mean energy expenditure of
nurses from hospital B is higher than that of nurses from hospital A.

This section describes how to compute the confidence intervals and p-values in such
two-sample setups.

3.2.1 Comparing two independent means - confidence Interval

We assume now that we have a sample x1, . . . , xn taken at random from one
population with mean µ1 and variance σ2

1 and another sample y1, . . . , yn taken
at random from another population with mean µ2 and variance σ2

2 .
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Method 3.47 The two-sample confidence interval for µ1 − µ2

For two samples x1, . . . , xn and y1, . . . , yn the 100(1− α)% confidence inter-
val for µ1 − µ2 is given by

x̄− ȳ± t1−α/2 ·

√
s2

1
n1

+
s2

2
n2

, (3-45)

where t1−α/2 is the (1− α/2)-quantile from the t-distribution with ν degrees
of freedom given from Equation (3-50)

ν =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

. (3-46)

Note how the t-quantile used for the confidence interval is exactly what we
called the critical value above.

Example 3.48 Nutrition study

Let us find the 95% confidence interval for µB − µA. Since the relevant t-quantile is,
using ν = 15.99,

t0.975 = 2.120,

the confidence interval becomes

10.298− 8.293± 2.120 ·
√

2.0394
9

+
1.954

9
,

which then gives the result as also seen above

[0.59, 3.42].

3.2.2 Comparing two independent means - hypothesis test

We describe the setup as having a random sample from each of two different
populations, each described by a mean and a variance:
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• Population 1: has mean µ1, and variance σ2
1

• Population 2: has mean µ2, and variance σ2
2

The interest lies in the comparisons of the means.

Method 3.49 The (Welch) two-sample t-test statistic

When considering the null hypothesis about the difference between the
means of two independent samples

δ = µ2 − µ1,
H0 : δ = δ0,

(3-47)

the (Welch) two-sample t-test statistic is

tobs =
(x̄1 − x̄2)− δ0√
s2

1/n1 + s2
2/n2

. (3-48)

Theorem 3.50 The distribution of the (Welch) two-sample statistic

The (Welch) two-sample statistic seen as a random variable

T =
(X̄1 − X̄2)− δ0√

S2
1/n1 + S2

2/n2

, (3-49)

approximately, under the null hypothesis, follows a t-distribution with ν

degrees of freedom, where

ν =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

, (3-50)

if the two population distributions are normal or if the two sample sizes are
large enough.

We can now, based on this, express the full hypothesis testing procedures for
the two-sample setting:
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Method 3.51 The level α two-sample t-test

1. Compute the test statistic using Equation (3-48) and ν from Equa-
tion (3-50)

tobs =
(x̄1 − x̄2)− δ0√
s2

1/n1 + s2
2/n2

and ν =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

2. Compute the evidence against the null hypothesisa

H0 : µ1 − µ2 = δ0,

vs. the alternative hypothesis

H1 : µ1 − µ2 6= δ0,

by the

p-value = 2 · P(T > |tobs|),

where the t-distribution with ν degrees of freedom is used

3. If p-value < α: we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±t1−α/2:
if |tobs| > t1−α/2 we reject H0, otherwise we accept H0

aWe are often interested in the test where δ0 = 0

An assumption that often is applied in statistical analyses of various kinds is
that of the underlying variability being of the same size in different groups or
at different conditions. The assumption is rarely crucial for actually carrying
out some good statistics, but it may indeed make the theoretical justification for
what is done more straightforward, and the actual computational procedures
also may become more easily expressed. We will see in later chapters how this
comes in play. Actually, the methods presented above do not make this as-
sumption, which is nice. The fewer assumptions needed the better, obviously.
Assumptions are problematic in the sense, that they may be questioned for par-
ticular applications of the methods.
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However, below we will present a version of the two-sample t-test statistic, that
actually is adapted to such an assumption, namely assuming that the two pop-
ulation variances are the same: σ2

1 = σ2
2 . We present it here not because we

really need it, we will use the above in all situations. But the version below
will appear and be used many places and it also bears some nice relations to
later multi-group analysis (Analysis of Variance (ANOVA)) that we will get to
in Chapter 8.

If we believe in the equal variance assumption it is natural to compute a single
joint – called the pooled – estimate of the variance based on the two individual
variances:

Method 3.52 The pooled two-sample estimate of variance

Under the assumption that σ2
1 = σ2

2 the pooled estimate of variance is the
weighted average of the two sample variances

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

. (3-51)

Note that when there is the same number of observations in the two groups,
n1 = n2, the pooled variance estimate is simply the average of the two sample
variances. Based on this the so-called pooled two-sample t-test statistic can be
given:

Method 3.53 The pooled two-sample t-test statistic

When considering the null hypothesis about the difference between the
means of two independent samples

δ = µ1 − µ2,
H0 : δ = δ0.

(3-52)

the pooled two-sample t-test statistic is

tobs =
(x̄1 − x̄2)− δ0√
s2

p/n1 + s2
p/n2

. (3-53)
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And the following theorem would form the basis for hypothesis test procedures
based on the pooled version:

Theorem 3.54 The distribution of the pooled two-sample t-test
statistic

The pooled two-sample statistic seen as a random variable:

T =
(X̄1 − X̄2)− δ0√
S2

p/n1 + S2
p/n2

. (3-54)

follows, under the null hypothesis and under the assumption that σ2
1 = σ2

2 ,
a t-distribution with n1 + n2 − 2 degrees of freedom if the two population
distributions are normal.

A little consideration will show why choosing the Welch-version as the ap-
proach to always use makes good sense: First of all if s2

1 = s2
2 the Welch and the

Pooled test statistics are the same. Only when the two variances become really
different the two test-statistics may differ in any important way, and if this is
the case, we would not tend to favour the pooled version, since the assumption
of equal variances appears questionable then.

Only for cases with a small sample sizes in at least one of the two groups the
pooled approach may provide slightly higher power if you believe in the equal
variance assumption. And for these cases the Welch approach is then a some-
what cautious approach.

Example 3.55 Nutrition study

Let us consider the nurses example again, and test the null hypothesis expressing
that the two groups have equal means

H0 : δ = µA − µB = 0,

versus the alternative

H0 : δ = µA − µB 6= 0,

using the most commonly used significance level, α = 0.05. We follow the steps
of Method 3.51: we should first compute the test-statistic tobs and the degrees of
freedom ν. These both come from the basic computations on the data:
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# Load the two samples
xA = np.array([7.53, 7.48, 8.08, 8.09, 10.15, 8.4, 10.88, 6.13, 7.9])
xB = np.array([9.21, 11.51, 12.79, 11.85, 9.97, 8.79, 9.69, 9.68, 9.19])

# Summary statistics
print(xA.mean(),xB.mean())

8.293333333333335 10.297777777777776

print(xA.var(ddof=1),xB.var(ddof=1))

2.0394000000000005 1.954044444444444

print(len(xA),len(xB))

9 9

So

tobs =
10.298− 8.293√

2.0394/9 + 1.954/9
= 3.01,

and

ν =

( 2.0394
9 + 1.954

9

)2

(2.0394/9)2

8 + (1.954/9)2

8

= 15.99.

Or the same done in Python by ”manual” expression:
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# Keep the summary statistics
ms = np.array([xA.mean(),xB.mean()])
vs = np.array([xA.var(ddof=1),xB.var(ddof=1)])
ns = np.array([len(xA),len(xB)])

# The observed statistic
t_obs = (ms[1]-ms[0])/np.sqrt(vs[0]/ns[0]+vs[1]/ns[1])

# The degrees of freedom
nu = ((vs[0]/ns[0]+vs[1]/ns[1])**2)/((vs[0]/ns[0])**2/(ns[0]-1)
+(vs[1]/ns[1])**2/(ns[1]-1))

# Print the result
print(t_obs)

3.009133495521211

print(nu)

15.992693827602634

Next step is then to find the p-value

p-value = 2 · P(T > |tobs|) = 2P(T > 3.01) = 2 · 0.00415 = 0.0083,

where we use Python to find the probability P(T > 3.01) based on a t-distribution
with ν = 15.99 degrees of freedom:

# The probability of observing a value greater that t_obs
print(1 - stats.t.cdf(t_obs,df=nu))

0.004161369978658014

To complete the hypothesis test, we compare the p-value with the given α-level, in
this case α = 0.05, and conclude:

Since the p-value is less than α we reject the null hypothesis, and we have
sufficient evidence for concluding: the two nurse groups have on average dif-
ferent energy usage work levels. We have shown this effect to be statistically
significant.

In spite of a pre-defined α-level (whoever gave us that), it is always valuable to
consider at what other α-levels the hypothesis would be rejected/accepted. Or in
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different words, interpret the size of the p-value using Table 3.1 and we thus sharpen
the statement a little:

Since the p-value in this case is between 0.001 and 0.01 conclude: there is
a strong evidence against equality of the two population energy usage means
and it is found that the mean is significantly higher on Hospital B compared to
Hospital A.

The last part, that the mean is higher on Hospital B, can be concluded because it is
rejected that they are equal and x̄B > x̄A and we can thus add this to the conclusion.

Finally, the t-test computations are actually directly provided by the ttest_ind-
function from the SciPy package using the two data input vectors

# Use the automatic function for a t-test
test = stats.ttest_ind(xB,xA,equal_var=False)
tobs = test.statistic
pvalue = test.pvalue
df = test.df
print(tobs,pvalue,df)

3.009133495521211 0.00832273995731614 15.992693827602634

stats.ttest_ind(xB,xA,equal_var=False).confidence_interval(0.95)

ConfidenceInterval(low=np.float64(0.5922803841924627), high=np.float64(3.4166085046964207))

Note, how the default choices of the Python-function compare to our exposition:

• Default test version: the pooled test (assuming equal variances)

• Default α-level: 0.05

• Default ”direction version”: the two-sided (or non-directional) alternative hy-
pothesis (see Section 3.1.7 about other alternative hypotheses)

Actually, the final rejection/acceptance conclusion based on the default (or chosen)
α-level is not given by Python.

In the ttest_ind results the α-level is used for the given confidence interval for the
mean difference of the two populations, to be interpreted as: we accept that the
true difference in mean energy levels between the two nurse groups is somewhere
between 0.6 and 3.4.
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Remark 3.56

Often ”degrees of freedom” are integer values, but in fact t-distributions
with non-integer valued degrees of freedom are also well defined. The
ν = 15.99 t-distribution (think of the density function) is a distribution in
between the ν = 15 and the ν = 16 t-distributions. Clearly it will indeed be
very close to the ν = 16 one.

We did not in the example above use Step 4. of Method 3.51, which can be
called the critical value approach. In fact this approach is directly linked to
the confidence interval in the sense that one could make a rapid conclusion
regarding rejection or not by looking at the confidence interval and checking
whether the hypothesized value is in the interval or not. This would correspond
to using the critical value approach.

Example 3.57 Nutrition study

In the nutrition example above, we can see that 0 is not in the confidence interval so
we would reject the null hypothesis. Let us formally use Step 4 of Method 3.51 to
see how this is exactly the same: the idea is that one can even before the experiment
is carried out find the critical value(s), in this case:

The 5% critical values = ±t0.975 = ±2.120,

where the quantile is found from the t-distribution with ν = 15.99 degrees of free-
dom:

# The critical value for the test
print(stats.t.ppf(0.975,df=nu))

2.119984011855833

Now we conclude that since the observed t-statistic tobs = 3.01 is beyond the crit-
ical values (either larger than 2.120 or smaller than −2.120) the null hypothesis is
rejected, and further since it was higher, that µA − µB > 0 hence µB > µA.

Example 3.58 Overlapping confidence intervals?

A commonly encountered way to visualize the results of a two-sample comparison
is to use a bar plot of the means together with some measure of uncertainty, either
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simply the standard errors of the means or the 95% confidence intervals within each
group:

# The confidence intervals
CIA = stats.ttest_1samp(xA,popmean=0).confidence_interval(0.95)
CIB = stats.ttest_1samp(xB,popmean=0).confidence_interval(0.95)

# Barplots with error bars
fig, ax = plt.subplots(1, 1)
ax.bar(x=[0,1],height=[xA.mean(),xB.mean()],
yerr=[(CIA[1]-CIA[0])/2,(CIB[1]-CIB[0])/2],capsize=20,color=("r","g"))
ax.set(xlabel="Hospital",ylabel="Energy usage")
ax.set_xticks([0,1],("A","B"))
plt.tight_layout()
plt.show()
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Here care must taken in the interpretation of this plot: it is natural, if your main
aim is a comparison of the two means, to immediately visually check whether the
shown error bars, in this case the confidence intervals, overlap or not, to make a con-
clusion about group difference. Here they actually just overlap - could be checked
by looking at the actual CIs:
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# The confidence intervals
print(CIA)

ConfidenceInterval(low=np.float64(7.195617231957511), high=np.float64(9.391049434709158))

print(CIB)

ConfidenceInterval(low=np.float64(9.223278703268573), high=np.float64(11.37227685228698))

And the conclusion would (incorrectly) be that the groups are not statistically dif-
ferent. However, remind that we found above that the p-value = 0.008323, so we
concluded that there was strong evidence of a mean difference between the two
nurse groups.

The problem of the ”overlapping CI interpretation” illustrated in the example
comes technically from the fact that standard deviations are not additive but
variances are

σ(X̄A−X̄B)
6= σX̄A

+ σX̄B
,

V(X̄A − X̄B) = V(X̄A) + V(X̄B).
(3-55)

The latter is what the confidence interval for the mean difference µA− µB is using
and what should be used for the proper statistical comparison of the means.
The former is what you implicitly use in the ”overlapping CI interpretation
approach”.

The proper standard deviation (sampling error) of the sample mean difference due
to Pythagoras, is smaller than the sum of the two standard errors: assume that
the two standard errors are 3 and 4. The sum is 7, but the square-root of the
squares is

√
32 + 42 = 5. Or more generally

σ(X̄A−X̄B)
< σX̄A

+ σX̄B
. (3-56)

So we can say the following:
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Remark 3.59

When interpreting two (and multi-) independent samples mean bar plots
with added confidence intervals:

When two CIs do NOT overlap: The two groups are significantly different

When two CIs DO overlap: We do not know from this what the conclusion
is (but then we can use the presented two-sample test method)

One can consider other types of plots for visualizing (multi)group differences.
We will return to this in Chapter 8 on the multi-group data analysis, the so-
called Analysis of Variance (ANOVA).

3.2.3 The paired design and analysis

Example 3.60 Sleeping medicine

In a study the aim is to compare two kinds of sleeping medicine A and B. 10 test
persons tried both kinds of medicine and the following results are obtained, given
in prolonged sleep length (in hours) for each medicine type:

Person A B D = B− A
1 +0.7 +1.9 +1.2
2 -1.6 +0.8 +2.4
3 -0.2 +1.1 +1.3
4 -1.2 +0.1 +1.3
5 -1.0 -0.1 +0.9
6 +3.4 +4.4 +1.0
7 +3.7 +5.5 +1.8
8 +0.8 +1.6 +0.8
9 0.0 +4.6 +4.6
10 +2.0 +3.4 +1.4

Note that this is the same experiment as already treated in Example 3.21. We now
in addition see the original measurements for each sleeping medicine rather than
just individual differences given earlier. And we saw that we could obtain the rele-
vant analysis (p-value and confidence interval) by a simple call to the ttest_1samp
function using the 10 differences:
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# Read the samples
x1 = np.array([0.7, -1.6, -0.2, -1.2, -1.0, 3.4, 3.7, 0.8, 0.0, 2.0])
x2 = np.array([1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4])

# Take the differences
dif = x2 - x1

# t-test on the differences
test = stats.ttest_1samp(dif,popmean=0)
print(test.statistic,test.pvalue,test.df)

4.671645978656774 0.0011658764685528319 9

stats.ttest_1samp(dif,popmean=0).confidence_interval(0.95)

ConfidenceInterval(low=np.float64(0.8613337442036719), high=np.float64(2.4786662557963277))

The example shows that this section actually could be avoided, as the right way
to handle this so-called paired situation is to apply the one-sample theory and
methods from Section 3.1 on the differences

di = xi − yi for i = 1, 2, ..., n. (3-57)

Then we can do all relevant statistics based on the mean d̄ and the variance s2
d

for these differences.

The reason for having an entire section devoted to the paired t-test is that it is
an important topic for experimental work and statistical analysis. The paired
design for experiments represents an important generic principle for doing ex-
periments as opposed to the un-paired/independent samples design, and these
important basic experimental principles will be important also for multi-group
experiments and data, that we will encounter later in the material.
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Example 3.61 Sleeping medicine

And similarly in Python, they have prepared way to do the paired analysis directly
on the two-sample data:

# Give both samples, but make paired t-test
test = stats.ttest_rel(x2,x1)
print(test.statistic,test.pvalue,test.df)

4.671645978656774 0.0011658764685528319 9

stats.ttest_rel(x2,x1).confidence_interval(0.95)

ConfidenceInterval(low=np.float64(0.8613337442036719), high=np.float64(2.4786662557963277))

Paired vs. completely randomized experiments

An experiment like the one exemplified here where two treatments are investi-
gated can essentially be performed in two different ways:

Completely Randomized (independent samples) 20 patients are used and com-
pletely at random allocated to one of the two treatments (but usually mak-
ing sure to have 10 patients in each group). So: different people in the
different groups.

Paired (dependent samples) 10 patients are used, and each of them tests both
of the treatments. Usually this will involve some time in between treat-
ments to make sure that it becomes meaningful, and also one would typ-
ically make sure that some patients do A before B and others B before A.
(and doing this allocation at random). So: the same people in the different
groups.

Generally, one would expect that whatever the experiment is about and which
observational units are involved (people, patients, animals) the outcome will
be affected by the properties of each individual – the unit. In the example,
some people will react positively to both treatments because they generally are
more prone to react to sleeping medicines. Others will not respond as much
to sleeping medicine. And these differences, the person-to-person variability,
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will give a high variance for the Welch independent samples t-test used for
the independent samples case. So generally, one would often prefer to carry
out a paired experiment, where the generic individual variability will not blur
the signal – one can say that in a paired experiment, each individual serves as
his/her own control – the effect of the two treatments are estimated for each
individual. We illustrate this by analysing the example data wrongly, as if they
were the results of a completely randomized experiment on 20 patients:

Example 3.62 Sleeping medicine - WRONG analysis

What happens when applying the wrong analysis:

# WRONG analysis
test = stats.ttest_ind(x2,x1,equal_var=False)
print(test.statistic,test.pvalue,test.df)

1.9334408348617207 0.06915652250932773 17.900065494971773

Note how the p-value here is around 0.07 as opposed to the 0.001 from the proper
paired analysis. Also the confidence interval is much wider. Had we done the ex-
periment with 20 patients and gotten the results here, then we would not be able
to detect the difference between the two medicines. What happened is that the in-
dividual variabilities seen in each of the two groups now, incorrectly so, is being
used for the statistical analysis and these are much larger than the variability of the
differences:

# The sample variances of each sample and of the differences
print(x1.var(ddof=1))

3.4515555555555557

print(x2.var(ddof=1))

4.009

print((x2-x1).var(ddof=1))

1.2778888888888886



Chapter 3 3.2 LEARNING FROM TWO-SAMPLE QUANTITATIVE DATA 64

3.2.4 Validation of assumptions with normality investigations

For normality investigations in two-sample settings we use the tools given for
one-sample data, presented in Section 3.1.8. For the paired setting, the investi-
gation would be carried out for the differences. For the independent case the
investigation is carried out within each of the two groups.
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3.3 Planning a study: wanted precision and power

Experiments and observational studies are always better when they are care-
fully planned. Good planning covers many features of the study. The obser-
vations must be sampled appropriately from the population, reliable measure-
ments must be made and the study must be "big enough" to be able to detect
an effect of interest. And if the study becomes too big, effects of little practical
interest may become statistically significant, and (some of) the money invested
in the study will be wasted. Sample size is important for economic reasons: an
oversized study uses more resources than necessary, this could be both finan-
cial but also ethical if subjecting objects to potentially harmful treatments, an
undersized study can be wasted if it is not able to produce reliable results.

Sample size is very important to consider before a study is carried out.

3.3.1 Sample Size for wanted precision

One way of calculating the required sample size is to work back from the wanted
precision. From (3-10) we see that the confidence interval is symmetric around
x̄ and the half width of the confidence interval (also called the margin of error
(ME)) is given as

ME = t1−α/2
σ√
n

. (3-58)

Here t1−α/2 is the (1− α/2) quantile from the t-distribution with n− 1 degrees
of freedom. This quantile depends on both α and the sample size n, which is
what we want to find.

The sample size now affects both n and t1−α/2, but if we have a large sample
(e.g. n ≥ 30) then we can use the normal approximation and replace t1−α/2 by
the quantile from the normal distribution z1−α/2.

In the expression for ME in Equation (3-58) we also need σ, the standard devi-
ation. An estimate of the standard deviation would usually only be available
after the sample has been taken. Instead we use a guess for σ possibly based on
a pilot study or from the literature, or we could use a scenario based choice (i.e.
set σ to some value which we think is reasonable).

For a given choice of ME it is now possible to isolate n in Equation (3-58) (with
the normal quantile inserted instead of the t-quantile):
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Method 3.63 The one-sample CI sample size formula

When σ is known or guessed at some value, we can calculate the sample
size n needed to achieve a given margin of error, ME, with probability 1− α

as

n =
(z1−α/2 · σ

ME

)2
. (3-59)

Example 3.64 Student heights

In Example 3.1 we inferred using a sample of heights of 10 students and found the
sample mean height to be x̄ = 178 and standard deviation s = 12.21. We can now
calculate how many students we should include in a new study, if we want a margin
of error of 3 cm with confidence 95%. Using the standard deviation from the pilot
study with 10 students as our guess we can plug into Method 3.63

n =

(
1.96 · 12.21

3

)2

= 63.64.

These calculations show that we should include 64 students, the nearest integer to
63.64.

The formula and approach here has the weakness that it only gives an “ex-
pected” behaviour of a coming experiment - at first reading this may seem good
enough, but if you think about it, it means that approximately half of the times
the actual width will be smaller and the other half, it will be larger than ex-
pected. If the uncertainty variability is not too large it might not be a big prob-
lem, but nothing in the approach helps us to know whether it is good enough
– we cannot guarantee a minimum accuracy with a certain probability. A more
advanced approach, that will help us control more precisely that a future exper-
iment/study will meet our needs, is presented now.

3.3.2 Sample size and statistical power

Another way of calculating the necessary sample size is to use the power of the
study. The statistical power of a study is the probability of correctly rejecting H0 if H0
is false. The relations between Type I error, Type II error and the power are seen
in the table below.
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Figure 3.2: The mean µ0 is the mean under H0 and µ1 the mean under H1. When
µ1 increases (i.e. moving away from µ0) so does the power (the yellow area on
the graph).

Reject H0 Fail to reject H0
H0 is true Type I error (α) Correct acceptance of H0
H0 is false Correct rejection of H0 (Power) Type II error (β)

The power has to do with the Type II error β, the probability of wrongly accept-
ing H0, when H0 actually is false. We would like to have high power (low β), but
it is clear that this will be impossible for all possible situations: it will depend
on the scenario for the potential mean – small potential effects will be difficult
to detect (low power), whereas large potential effects will be easier to detect
(higher power), as illustrated in Figure 3.2. In the left plot we have the mean
under H0 (µ0) close to the mean under the alternative hypothesis (µ1) making
it difficult to distinguish between the two and the power becomes low. In the
right plot µ0 and µ1 are further apart and the statistical power is much higher.

The power approach to calculating the sample size first of all involves specify-
ing the null hypothesis H0. Then the following four elements must be speci-
fied/chosen:

• The significance level α of the test (in Python: alpha)

• A difference in the mean that you would want to detect, delta

• The standard deviation σ (sd in the code)

• The wanted power (1− β) (in Python: power)

When these values have been decided, it is possible to calculate the necessary
sample size, n. In the one-sided,one-sample t-test there is an approximate closed
form for n and this is also the case in some other simple situations. Python offers



Chapter 3 3.3 PLANNING A STUDY: WANTED PRECISION AND POWER 68

easy to use functions for this not based on the approximate normal distribution
assumption, but using the more proper t-distributions. In more complicated
settings even it is possible to do some simulations to find the required sample
size.

Method 3.65 The one-sample sample size formula

For the one-sample t-test for given α, β and σ

n =

(
σ

z1−β + z1−α/2

(µ0 − µ1)

)2

,

where µ0 − µ1 is the difference in means that we would want to detect and
z1−β, z1−α/2 are quantiles of the standard normal distribution.

Example 3.66 Sample size as function of power

The following figure shows how the sample size increases with increasing power
using the formula in 3.65. Here we have chosen σ = 1 and α = 0.05. Delta is
µ0 − µ1.
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Example 3.67 Student heights

If we return to the example with student heights 3.1, we might want to collect data
for a new study to test the hypothesis about the mean height

H0 : µ = 180

Against the alternative

H1 : µ 6= 180

This is the first step in the power approach. The following four elements then are:

• Set the significance level α equal to 5%

• Specify that we want to be able to detect a difference of 4 cm

• We will use the standard deviation 12.21 from the study with 10 subjects as
our guess for σ

• We want a power of 80%

Using the formula in 3.65 we get

n =

(
12.21 · 0.84 + 1.96

4

)2

= 73.05.

So we would need to include 74 students.
We could also use a Python-function for power and sample size based on the t-
distributions:

# The sample size for power=0.80
delta = 4
sd = 12.21
alpha = 0.05
power = 0.8
smp.TTestPower().solve_power(effect_size=delta/sd, alpha=alpha, power=power)

75.07715049712685

From the calculations in Python avoiding the normal approximation the required
sample size is 76 students, very close to the number calculated by hand using the
approximation above.

In fact the Python-function is really nice in the way that it could also be used to find
the power for a given sample size, e.g. n = 50 (given all the other aspects):
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delta = 4
sd = 12.21
nobs = 50
alpha = 0.05
smp.TTestPower().solve_power(effect_size=delta/sd, nobs=nobs, alpha=alpha)

np.float64(0.6220915188555853)

This would only give the power 0.62 usually considered too low for a relevant effect
size.

And finally the Python-function can tell us what effect size and delta that could be
detected by, say, n = 50, and a power of 0.80:

nobs = 50
alpha = 0.05
power = 0.80
sd = 12.21
effect = smp.TTestPower().solve_power(nobs=nobs, alpha=alpha, power=power)
delta = effect*sd
print(delta)

4.935074496518317

So with n = 50 only a delta as big as 4.9 would be detectable with probability 0.80.

To summarize: if we know/define 4 out the 5 values: significance level, power
(1− β), n, delta, and σ, we can find the 5’th. In the Python-function, the argu-
ments are called alpha, power, nobs, and effect_size, where effect_size is
delta/σ.

In the practical planning of a study, often a number of scenario-based values of
delta and σ are used to find a reasonable size of the study.

3.3.3 Power/Sample size in two-sample setup

For power and sample size one can generalize the tools presented for the one-
sample setup in the previous section. We illustrate it here by an example of how
to work with the inbuilt Python-function:
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Example 3.68 Two-sample power and sample size computations
in Python

We consider the two-sample hypothesis test

H0 : µ1 = µ2,

H1 : µ1 6= µ2

# Finding the power of detecting a group difference of 2
# with sigma=1 for n=10
delta = 2
sd = 1
nobs = 10
alpha = 0.05
smp.TTestIndPower().solve_power(effect_size=delta/sd, nobs1=nobs, alpha=alpha, ratio=1.0)

np.float64(0.9881789691948746)

# Finding the sample size for detecting a group difference of 2
# with sigma=1 and power=0.9
delta = 2
sd = 1
alpha = 0.05
power = 0.90
smp.TTestIndPower().solve_power(effect_size=delta/sd, alpha=alpha, power=power, ratio=1.0)

6.386755384175011

# Finding the detectable effect size (delta)
# with sigma=1, n=10 and power=0.9
nobs = 10
alpha = 0.05
power = 0.90
sd = 1
effect = smp.TTestIndPower().solve_power(nobs1=nobs, alpha=alpha, power=power, ratio=1.0)
delta = effect*sd
print(delta)

1.5336931237722076
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Note that we now use the function TTestIndPower, which uses the arguments nobs1
and ratio to specify the number of observations in the two samples.
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Glossaries

Alternative hypothesis [Alternativ hypotese] The alternative hypothesis (H1)
is oftern the negation of the null hypothesis 31, 33, 34, 51, 67

χ2-distribution [χ2-fordeling (udtales: chi-i-anden fordeling)] 19–21

confidence interval [Konfidensinterval] The confidence interval is a way to han-
dle the uncertainty by the use of probability theory. The confidence inter-
val represents those values of the unknown population mean µ that we
believe is based on the data. Thus we believe the true mean in the statis-
tics class is in this interval 10

Central Limit Theorem [Centrale grænseværdisætning] The Central Limit The-
orem (CLT) states that the sample mean of independent identically dis-
tributed outcomes converges to a normal distribution 14

Critical value Kritisk værdi As an alternative to the p-value one can use the so-
called critical values, that is the values of the test-statistic which matches
exactly the significance level 29–31, 33, 51, 57

Degrees of freedom [Frihedsgrader] The number of "observations" in the data
that are free to vary when estimating statistical parameters often defined
as n− 1 6, 10, 18–21, 25, 29, 33, 49–51, 53, 55, 57, 65

Empirical cumulative distribution [Empirisk fordeling] The empirical cumu-
lative distribution function Fn is a step function with jumps i/n at obser-
vation values, where i is the number of identical observations at that value
38

Histogram [Histogram] The default histogram uses the same width for all classes
and depicts the raw frequencies/counts in each class. By dividing the raw
counts by n times the class width the density histogram is found where
the area of all bars sum to 1 2, 37, 38
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Independence [Uafhængighed] 14, 37

Independent samples [Uafhængige stikprøver] 60, 61, 63

(Statistical) Inference [Statistisk inferens (følgeslutninger baseret på data)] 1,
12, 15

Interval [Interval] Data in a specified range 1

Median [Median, stikprøvemedian] The median of population or sample (note,
in text no distinguishment between population median and sample median)
45

Normal distribution [Normal fordeling] 1, 2, 4–6, 9, 12, 15, 17, 19, 37–44, 65, 68

Null hypothesis [Nulhypotese (H0)] 22–25, 26, 27–31, 33, 34, 36, 48, 50–53, 55,
57

One-sample t-test Missing description 29, 32, 33, 67

One-sided (test) [Énsidet test] Is also called directional (test) 67

P-value [p-værdi (for faktisk udfald af en teststørrelse)] 22–29, 32, 36, 48, 55, 59,
63

Sample mean [Stikprøvegennemsnit] The average of a sample 1, 3–5, 8, 9, 11,
14, 15, 19, 22, 47, 66

Two-sided (test) [Tosidet test (test med tosidet alternativ)] Is also called non-
directional (test) 56
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Acronyms

ANOVA Analysis of Variance 52, 60, Glossary: Analysis of Variance

cdf cumulated distribution function Glossary: cumulated distribution function

CI confidence interval 1–3, 9–12, 17–19, 21, 27, 30, 31, 36, 43, 45, 47–49, 56–60,
63, 65, 66, Glossary: confidence interval

CLT Central Limit Theorem 14, 15, 17, Glossary: Central Limit Theorem

IQR Inter Quartile Range Glossary: Inter Quartile Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function
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