
Chapter 4

Chapter 4

Simulation Based Statistics

Chapter 4

Contents

4 Simulation Based Statistics
4.1 Probability and Simulation . 1

4.1.1 Introduction . 1
4.1.2 Simulation as a general computational tool 3
4.1.3 Propagation of error . 5

4.2 The parametric bootstrap . 9
4.2.1 Introduction . 9
4.2.2 One-sample confidence interval for µ 10
4.2.3 One-sample confidence interval for any feature assuming

any distribution . 12
4.2.4 Two-sample confidence intervals assuming any distribu-

tions . 17
4.3 The non-parametric bootstrap . 22

4.3.1 Introduction . 22
4.3.2 One-sample confidence interval for µ 22
4.3.3 One-sample confidence interval for any feature 24
4.3.4 Two-sample confidence intervals 25

Glossaries 29

Acronyms 30

Chapter 4 4.1 PROBABILITY AND SIMULATION 1

4.1 Probability and Simulation

4.1.1 Introduction

One of the really big gains for statistics and modelling of random phenomena,
provided by computer technology during the last decades, is the ability to sim-
ulate random systems on the computer, as we have already seen much in use
in Chapter 2. This provides possibilities to obtain results that otherwise from a
mathematical analytical point of view would be impossible to calculate. And,
even in cases where the highly educated mathematician/physicist might be able
to find solutions, simulation is a general and simple calculation tool allowing
solving complex problems without a need for deep theoretical insight.

An important reason for including this subject in an introductory statistics course,
apart from using it as a pedagogical tool to aide the understanding of random
phenomena, is the fact that the methods we are usually introducing in basic
statistics are characterized by relying on one of two conditions:

1. The original data population density is assumed to be a normal distribu-
tion

2. Or: The sample size n is large enough to make this assumption irrelevant
for what we do

And in real settings it may be challenging to know for sure whether any of these
two are really satisfied, so to what extend can we trust the statistical conclusions
that we make using our basic tools, as e.g. the one- and two-sample statistical
methods presented in Chapter 3. And how should we do the basic statistical
analysis if we even become convinced that none of these two conditions are ful-
filled? Statistical data analysis based on simulation tools is a valuable tool to
complete the tool box of introductory statistics. It can be used to do statistical
computing for other features than just means, and for other population distri-
butions than the normal. It can also be used to investigate whether some of our
assumptions appear reasonable. We already saw an example of this in relation
to the qq-plots in Chapter 3.1.9.

In fact, it will become clear that the simulation tools presented here will make
us rapidly able to perform statistical analysis that goes way beyond what histor-
ically has been introduced in basic statistics classes or textbooks. Unfortunately,
the complexity of real life engineering applications and data analysis challenges
can easily go beyond the settings that we have time to cover within an intro-
ductory exposition. With the general simulation tool in our tool box, we have

Chapter 4 4.1 PROBABILITY AND SIMULATION 2

a multi-tool that can be used for (and adapted to) basically almost any level of
complexity that we will meet in our future engineering activity.

The classical statistical practice would be to try to ensure that the data we’re
analyzing behaves like a normal distribution: symmetric and bell-shaped his-
togram. In Chapter 3 we also learned that we can make a normal q-q plot to
verify this assumption in practice, and possibly transform the data to get them
closer to being normal. The problem with small samples is that it even with
these diagnostic tools can be difficult to know whether the underlying distribu-
tion really is ”normal” or not.

And in some cases the assumption of normality after all simply may be obvi-
uosly wrong. For example, when the response scale we work with is far from
being quantitative and continuous - it could be a scale like ”small”, ”medium”
and ”large” - coded as 1, 2 and 3. We need tools that can do statistical analy-
sis for us WITHOUT the assumption that the normal distribution is the right
model for the data we observe and work with.

Traditionally, the missing link would be covered by the so-called non-parametric
tests. In short this is a collection of methods that make use of data at a more
coarse level, typically by focusing on the rank of the observations instead of the
actual values of the observations. So in a paired t-test setup, for example, one
would just count how many times the observations in one sample is bigger than
in the other – instead of calculating the differences. In that way you can make
statistical tests without using the assumption of an underlying normal distribu-
tion. There are a large number of such non-parametric tests for different setups.
Historically, before the computer age, it was the only way to really handle such
situations in practice. These tests are all characterized by the fact that they are
given by relatively simple computational formulas which in earlier times easily
could be handled. For small sample statistics with questionable distributional
settings, these tools maintain to offer a robust set of basic statistical procedures.

The simulation based methods that we now present instead have a couple of
crucial advantages to the traditional non-parametric methods:

• Confidence intervals are much easier to achieve

• They are much easier to apply in more complex situations

• They scale better to modern time big data analysis

Chapter 4 4.1 PROBABILITY AND SIMULATION 3

4.1.2 Simulation as a general computational tool

Basically, the strength of the simulation tool is that one can compute arbitrary
functions of random variables and their outcomes. In other words one can find
probabilities of complicated outcomes. As such, simulation is really not a statis-
tical tool, but rather a probability calculus tool. However, since statistics essen-
tially is about analysing and learning from real data in the light of certain proba-
bilities, the simulation tool indeed becomes of statistical importance, which we
will exemplify very specifically below. Before starting with exemplifying the
power of simulation as a general computational tool, we refer to the introduc-
tion to simulation in Chapter 2 – in particular read first Section 2.6, Example ??
and thereafter Section 2.6.

Example 4.1 Rectangular plates

A company produces rectangular plates. The length of plates (in meters), X is as-
sumed to follow a normal distribution N(2, 0.012) and the width of the plates (in
meters), Y are assumed to follow a normal distribution N(3, 0.022). We’re hence
dealing with plates of size 2× 3 meters, but with errors in both length and width.
Assume that these errors are completely independent. We are interested in the area
of the plates which of course is given by A = XY. This is a non-linear function of X
and Y, and actually it means that we, with the theoretical tools we presented so far
in the material, cannot figure out what the mean area really is, and not at all what
the standard deviation would be in the areas from plate to plate, and we would defi-
nitely not know how to calculate the probabilities of various possible outcomes. For
example, how often such plates have an area that differ by more than 0.1 m2 from
the targeted 6 m2? One statement summarizing all our lack of knowledge at this
point: we do not know the probability distribution of the random variable A and
we do not know how to find it! With simulation, it is straightforward: one can find
all relevant information about A by just simulating the X and Y a high number of
times, and from this compute A just as many times, and then observe what happens
to the values of A. The first step is then given by:

Number of simulations
k = 10000

Simulate X and Y, then A
X = stats.norm.rvs(loc=2,scale=0.01,size=k)
Y = stats.norm.rvs(loc=3,scale=0.02,size=k)
A = X * Y

The Python object A now contains 10.000 observations of A. The expected value

Chapter 4 4.1 PROBABILITY AND SIMULATION 4

and the standard deviation for A are simply found by calculating the average and
standard deviation for the simulated A-values:

The mean and std. deviation of the simulated values
print(A.mean())

6.000707518857636

print(A.std(ddof=1))

0.050187379229233574

and the desired probability, P(|A− 6| > 0.1) = 1− P(5.9 ≤ A ≤ 6.1) is found by
counting how often the incident actually occurs among the k outcomes of A:

1*(abs(A-6) > 0.1).mean()

np.float64(0.0454)

The code abs(A-6) > 0.1 creates an array with values TRUE or FALSE depending on
whether the absolute value of A− 6 is greater than 0.1 or not. When you multiply
by 1 the TRUE is automatically translated into 1 and FALSE automatically translated
to 0. To find the probability, we sum these binary values and divide by number
of simulations k. This is equivalent to finding the mean of the binary values, and
therefore we use the mean method.

Note, that if you do this yourself without using the same seed value you will not
get exactly the same result. It is clear that this simulation uncertainty is something
we must deal with in practice. The size of this will depend on the situation and
on the number of simulations k. We can always get a first idea of it in a specific
situation simply by repeating the calculation a few times and note how it varies.
Indeed, one could then formalize such an investigation and repeat the simulation
many times, to get an evaluation of the simulation uncertainty. We will not pursue
this further here. When the target of the computation is in fact a probability, as in the
latter example here, you can alternatively use standard binomial statistics, which is
covered in Chapter 2 and Chapter 7. For example, with k = 100000 the uncertainty

for a calculated proportion of around 0.044 is given by:
√

0.044(1−0.044)
100000 = 0.00065. Or

for example, with k = 10000000 the uncertainty is 0.000065. The result using such

Chapter 4 4.1 PROBABILITY AND SIMULATION 5

a k was 0.0455 and because we’re a bit unlucky with the rounding position we can
in practice say that the exact result rounded to 3 decimal places are either 0.045 or
0.046. In this way, a calculation which is actually based on simulation is turned into
an exact one in the sense that rounded to 2 decimal places, the result is simply 0.05.

4.1.3 Propagation of error

Within chemistry and physics one may speak of measurement errors and how
measurement errors propagate/accumulate if we have more measurements and/or
use these measurements in subsequent formulas/calculations. First of all: The
basic way to ”measure an error”, that is, to quantify a measurement error is by
means of a standard deviation. As we know, the standard deviation expresses
the average deviation from the mean. It is clear it may happen that a measur-
ing instrument also on average measures wrongly (off the target). This is called
”bias”, but in the basic setting here, we assume that the instrument has no bias.

Hence, reformulated, an error propagation problem is a question about how
the standard deviation of some function of the measurements depends on the
standard deviations for the individual measurement: let X1, . . . , Xn be n mea-
surements with standard deviations (average measurement errors) σ1, . . . , σn.
As usual in this material, we assume that these measurement errors are inde-
pendent of each other. There are extensions of the formulas that can handle
dependencies, but we omit those here. We must then in a general formulation
be able to find

σ2
f (X1,...,Xn)

= V(f (X1, . . . , Xn)). (4-1)

Remark 4.2

[For the thoughtful reader: Measurement errors, errors and variances] Al-
though we motivate this entire treatment by the measurement error termi-
nology, often used in chemistry and physics, actually everything is valid
for any kind of errors, be it “time-to-time” production errors, or “substance-
to-substance” or “tube-to-tube” errors. What the relevant kind of er-
rors/variabilities are depends on the situation and may very well be mixed
together in applications. But, the point is that as long as we have a relevant
error variance, we can work with the concepts and tools here. It does not
have to have a “pure measurement error” interpretation.

Chapter 4 4.1 PROBABILITY AND SIMULATION 6

Actually, we have already in this course seen the linear error propagation rule,
in Theorem in 2.56, which then can be restated here as

If f (X1, . . . , Xn) =
n

∑
i=1

aiXi, then σ2
f (X1,...,Xn)

=
n

∑
i=1

a2
i σ2

i .

There is a more general non-linear extension of this, albeit theoretically only an
approximate result, which involves the partial derivative of the function f with
respect to the n variables:

Method 4.3 The non-linear approximative error propagation rule

If X1, . . . , Xn are independent random variables with variances σ2
1 , . . . , σ2

n
and f is a (potentially non-linear) function of n variables, then the variance
of the f -transformed variables can be approximated linearly by

σ2
f (X1,...,Xn)

=
n

∑
i=1

(
∂ f
∂xi

)2

σ2
i , (4-2)

where ∂ f
∂xi

is the partial derivative of f with respect to the i’th variable

In practice one would have to insert the actual measurement values x1, . . . , xn
of X1, . . . , Xn in the partial derivatives to apply the formula in practice, see the
example below. This is a pretty powerful tool for the general finding of (ap-
proximate) uncertainties for complicated functions of many measurements or
for that matter: complex combinations of various statistical quantities. When
the formula is used for the latter, it is also in some contexts called the ”delta
rule” (which is mathematically speaking a so-called first-order (linear) Taylor
approximations to the non-linear function f). We bring it forward here, because
as an alternative to this approximate formula one could use simulation in the
following way:

Chapter 4 4.1 PROBABILITY AND SIMULATION 7

Method 4.4 Non-linear error propagation by simulation

Assume we have actual measurements x1, . . . , xn with known/assumed er-
ror variances σ2

1 , . . . , σ2
n:

1. Simulate k outcomes of all n measurements from assumed error distri-
butions, e.g. N(xi, σ2

i): X(j)
i , j = 1 . . . , k.

2. Calculate the standard deviation directly as the observed standard de-
viation of the k simulated values of f :

ssim
f (X1,...,Xn)

=

√√√√ 1
k− 1

k

∑
j=1

(f j − f̄)2, (4-3)

where

f j = f (X(j)
1 , . . . , X(j)

n). (4-4)

Example 4.5

Let us continue the example with A = XY and X and Y defined as in the example
above. First of all note, that we already above used the simulation based error prop-
agation method, when we found the standard deviation to be 0.04957 based on the
simulation. To exemplify the approximate error propagation rule, we must find the
derivatives of the function f (x, y) = xy with respect to both x and y

∂ f
∂x

= y
∂ f
∂y

= x.

Assume, that we now have two specific measurements of X and Y, for example
x = 2.00 m and y = 3.00 m the error propagation law would provide the following
approximate calculation of the ”uncertainty error variance of the area result” 2.00 m ·
3.00 m = 6.00 m2, namely

σ2
A = y2 · 0.012 + x2 · 0.022 = 3.002 · 0.012 + 2.002 · 0.022 = 0.0025.

So, with the error propagation law we are managing a part of the challenge without
simulating. Actually, we are pretty close to be able to find the correct theortical
variance of A = XY using tools provided in this course. By the definition and the
following fundamental relationship

V(X) = E(X− E(X))2 = E(X2)− E(X)2. (4-5)

Chapter 4 4.1 PROBABILITY AND SIMULATION 8

So, one can actually deduce the variance of A theoretically, it is only necessary
to know in addition that for independent random variables: E(XY) = E(X)E(Y)
(which by the way then also tells us that E(A) = E(X)E(Y) = 6)

V(XY) = E
[
(XY)2]− E(XY)2

= E(X2)E(Y2)− E(X)2 E(Y)2

=
[
V(X) + E(X)2] [V(Y) + E(Y)2]− E(X)2 E(Y)2

= V(X)V(Y) + V(X)E(Y)2 + V(Y)E(X)2

= 0.012 · 0.022 + 0.012 · 32 + 0.022 · 22

= 0.00000004 + 0.0009 + 0.0016

= 0.00250004.

Note, how the approximate error propagation rule actually corresponds to the two
latter terms in the correct variance, while the first term – the product of the two
variances is ignored. Fortunately, this term is the smallest of the three in this case. It
does not always have to be like that. If you want to learn how to make a theoretical
derivation of the density function for A = XY then take a course in probability
calculation.

Note, how we in the example actually found the ”average error”, that is, the
error standard deviation by three different approaches:

1. The simulation based approach

2. The analytical, but approximate, error propagation method

3. A theoretical derivation

The simulation approach has a number of crucial advantages:

1. It offers a simple way to compute many other quantities than just the stan-
dard deviation (the theoretical derivations of such other quantities could
be much more complicated than what was shown for the variance here)

2. It offers a simple way to use any other distribution than the normal – if we
believe such better reflect reality

3. It does not rely on any linear approximations of the true non-linear rela-
tions

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 9

4.2 The parametric bootstrap

4.2.1 Introduction

Generally, a confidence interval for an unknown parameter µ is a way to ex-
press uncertainty using the sampling distribution of µ̂ = x̄. Hence, we use a
distribution that expresses how our calculated value would vary from sample
to sample. And the sampling distribution is a theoretical consequence of the
original population distribution. As indicated, we have so far no method to do
this if we only have a small sample size (n < 30), and the data cannot be as-
sumed to follow a normal distribution. In principle there are two approaches
for solving this problem:

1. Find/identify/assume a different and more suitable distribution for the
population (”the system”)

2. Do not assume any distribution whatsoever

The simulation method called bootstrapping, which in practice is to simulate
many samples, exists in two versions that can handle either of these two chal-
lenges:

1. Parametric bootstrap: simulate multiple samples from the assumed distri-
bution.

2. Non-parametric bootstrap: simulate multiple samples directly from the
data.

Actually, the parametric bootstrap handles in addition the situation where data
could perhaps be normally distributed, but where the calculation of interest is
quite different than the average, for example, the coefficient of variation (stan-
dard deviation divided by average) or the median. This would be an example
of a non-linear function of data – thus not having a normal distribution nor a t-
distribution as a sampling distribution. So, the parametric bootstrap is basically
just an example of the use of simulation as a general calculation tool, as intro-
duced above. Both methods are hence very general and can be used in virtually
all contexts.

In this material we have met a few of such alternative continuous distributions,
e.g. the log-normal, uniform and exponential distributions. But if we think
about it, we have not (yet) been taught how to do any statistics (confidence
intervals and/or hypothesis testing) within an assumption of any of these. The

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 10

parametric bootstrap is a way to do this without relying on theoretical deriva-
tions of everything. As for the theoretical variance deduction above, there are
indeed methods for doing such general theoretical derivations, which would
make us able to do statistics based on any kind of assumed distribution. The
most welknown, and in many ways also optimal, overall approach for this is
called maximum likelihood theory. The general theory and approach of maxi-
mum likelihood is not covered in this course, however it is good to know that,
in fact, all the methods we present are indeed also maximum likelihood meth-
ods assuming normal distributions for the population(s).

4.2.2 One-sample confidence interval for µ

Example 4.6 Confidence interval for the exponential rate or mean

Assume that we observed the following 10 call waiting times (in seconds) in a call
center

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0.

If we model the waiting times using the exponential distribution, we can estimate
the mean as

µ̂ = x̄ = 26.08,

and hence the rate parameter λ = 1/β in the exponential distribution as (cf. 2.48)

λ̂ = 1/26.08 = 0.03834356.

However, what if we want a 95% confidence interval for either µ = β or λ? We
have not been tought the methods, that is, given any formulas for finding this. The
following few lines of Python-code, a version of the simulation based error propa-
gation approach from above, will do the job for us:

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 11

Read the data
x = np.array([32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0])
n = len(x)
rate = 1/x.mean()

Set the number of simulations
k = 100000

1. Simulate k samples each with n=10 observations from an
exponential distribution with the estimated rate
simsamples = stats.expon.rvs(scale=1/rate, size=(k,n))

2. Compute the mean in each of the k samples
simsamples = pd.DataFrame(simsamples)
simmeans = simsamples.mean(axis=1)

3. Find the two relevant quantiles of the k generated means
print(np.quantile(simmeans,[0.025,0.975],
method=’averaged_inverted_cdf’))

[12.575 44.563]

Explanation: we use stats.expon.rvs to generate 100.000 bootstrap samples each
with 10 observations from an exponential distribution with the estimated mean
value, and the results are collected in a 10× 100.000 matrix. Then in a single call
the 100.000 averages are calculated and subsequently the relevant quantiles found.

So the 95%-confidence interval for the mean µ is (in seconds)

[12.6, 44.6].

And for the rate λ = 1/µ it can be found by a direct transformation (remember that
the quantiles are ’invariant’ to monotonic transformations, c.f. Chapter 3)

[1/44.6, 1/12.6]⇔ [0.022, 0.0794].

The simulated sampling distribution of means that we use for our statistical analysis
can be seen with the histogram:

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 12

Histogram of the simulated means
plt.hist(simmeans, bins=30, edgecolor=’black’, color=’blue’, alpha=0.7)
plt.xlabel(’Means’)
plt.ylabel(’Frequency’)
plt.title(’Histogram of simulated means’)
plt.tight_layout()
plt.show()

0 20 40 60 80
Means

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

Histogram of simulated means

We see clearly that the sampling distribution in this case is not a normal nor a t-
distribution: it has a clear right skewed shape. So n = 10 is not quite large enough
for this exponential distribution to make the Central Limit Theorem take over.

The general method which we have used in the example above is given below
as Method 4.7.

4.2.3 One-sample confidence interval for any feature assuming
any distribution

We saw in the example above that we could easily find a confidence interval for
the rate λ = 1/µ assuming an exponential distribution. This was so, since the
rate was a simple (monotonic) transformation of the mean, and the quantiles
of simulated rates would then be the same simple transformation of the quan-
tiles of the simulated means. However, what if we are interested in something
not expressed as a simple function of the mean, for instance the median, the

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 13

coefficient of variation, the quartiles, Q1 or Q3, the IQR=Q3 − Q1 or any other
quantile? Well, a very small adaptation of the method above would make that
possible for us. To express that we now cover any kind of statistic one could
think of, we use the general notation, the Greek letter θ, for a general feature
of the distribution. For instance, θ could be the true median of the population
distribution, and then θ̂ is the sample median computed from the sample taken.

Method 4.7 Confidence interval for any feature θ by parametric
bootstrap

Assume we have actual observations x1, . . . , xn and assume that they stem
from some probability distribution with density (pdf) f :

1. Simulate k samples of n observations from the assumed distribution f
where the mean is set to x̄ a

2. Calculate the statistic θ̂ in each of the k samples θ̂∗1 , . . . , θ̂∗k

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

a(Footnote: And otherwise chosen to match the data as good as possible: some distributions
have more than just a single mean related parameter, e.g. the normal or the log-normal. For these
one should use a distribution with a variance that matches the sample variance of the data. Even
more generally the approach would be to match the chosen distribution to the data by the so-called
maximum likelihood approach)

Please note again, that you can simply substitute the θ with whatever statistics
that you are working with. This then also shows that the method box includes
the often occurring situation, where a confidence interval for the mean µ is the
aim.

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 14

Example 4.8 Confidence interval for the median assuming an ex-
ponential distribution

Let us look at the exponential data from the previous section and find the confidence
interval for the median:

Read the data
x = np.array([32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0])
n = len(x)
rate = 1/x.mean()

Set the number of simulations
k = 100000

1. Simulate k samples each with n=10 observations from an
exponential distribution with the estimated rate
simsamples = stats.expon.rvs(scale=1/rate, size=(k,n))

2. Compute the median in each of the k samples
simsamples = pd.DataFrame(simsamples)
simmedians = simsamples.median(axis=1)

3. Find the two relevant quantiles of the k generated medians
print(np.quantile(simmedians,[0.025,0.975],
method=’averaged_inverted_cdf’))

[7.093 38.333]

The simulated sampling distribution of medians that we use for our statistical anal-
ysis can be studied by the histogram:

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 15

Histogram of the simulated medians
plt.hist(simmedians, bins=30, edgecolor=’black’, color=’blue’, alpha=0.7)
plt.xlabel(’Medians’)
plt.ylabel(’Frequency’)
plt.title(’Histogram of simulated medians’)
plt.tight_layout()
plt.show()

0 10 20 30 40 50 60 70
Medians

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

Histogram of simulated medians

We see again clearly that the sampling distribution in this case is not a normal nor a
t-distribution: it has a clear right skewed shape.

Example 4.9 Confidence interval for Q3 assuming a normal distri-
bution

Let us look at the heights data from the previous chapters and find the 99% con-
fidence interval for the upper quartile: (Please note that you will find NO theory
nor analytically expressed method boxes in the material to solve this challenge). We
proceed like in the previous example:

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 16

Read the data
x = np.array([168, 161, 167, 179, 184, 166, 198, 187, 191, 179])
n = len(x)
mu = x.mean()
sd = x.std(ddof=1)

Set the number of simulations
k = 100000

1. Simulate k samples each with n=10 observations from a
normal distribution with the estimated parameters
simsamples = stats.norm.rvs(loc=mu, scale=sd, size=(k,n))

2. Compute the upper quartile in each of the k samples
simsamples = pd.DataFrame(simsamples)

A version using the quantile-function from Pandas.
Note: Pandas does not use our method of calculating quantiles.
simUQs = simsamples.quantile(0.75, axis=1)

A version using the quantile-function from NumPy.
simUQs = np.quantile(simsamples, 0.75, axis=1, method="averaged_inverted_cdf")

3. Find the two relevant quantiles of the k generated medians
print(np.quantile(simUQs,[0.005,0.995],method=’averaged_inverted_cdf’))

[173.481 199.813]

The simulated sampling distribution of upper quartiles that we use for our statistical
analysis can be studied by the histogram:

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 17

Histogram of the simulated upper quartiles
plt.hist(simUQs, bins=30, edgecolor=’black’, color=’blue’, alpha=0.7)
plt.xlabel(’Upper quartiles’)
plt.ylabel(’Frequency’)
plt.title(’Histogram of simulated upper quartiles’)
plt.tight_layout()
plt.show()

170 180 190 200 210
Upper quartiles

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

Histogram of simulated upper quartiles

In this case the Q3 of n = 10 samples of a normal distribution appear to be rather
symmetric and nicely distributed, so maybe one could in fact use the normal distri-
bution, also as an approximate sampling distribution in this case.

4.2.4 Two-sample confidence intervals assuming any distributions

In this section we extend what we learned in the two previous sections to the
case where the focus is a comparison between two (independent) samples. We
present a method box which is the natural extensions of the method box from
above, comparing any kind of feature (hence including the mean comparison):

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 18

Method 4.10 Two-sample confidence interval for any feature com-
parison θ1 − θ2 by parametric bootstrap

Assume we have actual observations x1, . . . , xn1 and y1, . . . , yn2 and assume
that they stem from some probability distributions with density f1 and f2:

1. Simulate k sets of 2 samples of n1 and n2 observations from the as-
sumed distributions setting the means to µ̂1 = x̄ and µ̂2 = ȳ, respec-
tively a

2. Calculate the difference between the features in each of the k samples
θ̂∗x1 − θ̂∗y1, . . . , θ̂∗xk − θ̂∗yk

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval[
q∗100(α/2)%, q∗100(1−α/2)%

]

a(Footnote: And otherwise chosen to match the data as good as possible: some distributions
have more than just a single mean related parameter, e.g. the normal or the log-normal. For these
one should use a distribution with a variance that matches the sample variance of the data. Even
more generally the approach would be to match the chosen distribution to the data by the so-called
maximum likelihood approach)

Example 4.11 CI for the difference of two means from exponential
distributed data

Let us look at the exponential data from the previous section and compare that with
a second sample of n = 12 observations from another day at the call center

9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2, 18.0, 62.4, 10.3.

Let us quantify the difference between the two days and conclude whether the call
rates and/or means are any different on the two days:

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 19

Read the data
x = np.array([32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3 , 4.7, 13.6, 2.0])
y = np.array([9.6, 22.2, 52.5, 12.6, 33.0, 15.2, 76.6, 36.3, 110.2, 18.0, 62.4, 10.3])
n1 = len(x)
n2 = len(y)
rate1 = 1/x.mean()
rate2 = 1/y.mean()

Set the number of simulations
k = 100000

1. Simulate k samples each with n1=10 observations from an
exponential distribution with the estimate rate of X
simXsamples = stats.expon.rvs(scale=1/rate1, size=(k,n1))
simXsamples = pd.DataFrame(simXsamples)

2. Simulate k samples each with n2=12 observations from an
exponential distribution with the estimated rate of Y
simYsamples = stats.expon.rvs(scale=1/rate2, size=(k,n2))
simYsamples = pd.DataFrame(simYsamples)

3. Compute the difference between the two simulated means - k times
simDifmeans = simXsamples.mean(axis=1) - simYsamples.mean(axis=1)

4. Find the two relevant quantiles of the k generated differences in mean
print(np.quantile(simDifmeans,[0.025,0.975],
method=’averaged_inverted_cdf’))

[-40.521 14.028]

Thus, although the mean waiting time was higher on the second day (ȳ = 38.24 s),
the range of acceptable values (the confidence interval) for the difference in means
is [−40.5, 14.0] – a pretty large range and including 0, so we have no evidence of the
claim that the two days had different mean waiting times (nor call rates then) based
on the current data.

Let us, as in previous examples take a look at the distribution of the simulated sam-
ples. In a way, we do not really need this for doing the analysis, but just out of
curiosity, and for the future it may give a idea of how far from normality the rele-
vant sampling distribution really is:

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 20

Histogram of the simulated differences
plt.hist(simDifmeans, bins=30, edgecolor=’black’, color=’blue’, alpha=0.7)
plt.xlabel(’Differences in mean’)
plt.ylabel(’Frequency’)
plt.title(’Histogram of differences in mean’)
plt.tight_layout()
plt.show()

75 50 25 0 25 50
Differences in mean

0

5000

10000

15000

Fr
eq

ue
nc

y

Histogram of differences in mean

In this case the differences of means of exponential distributions appears to be rather
symmetric and nicely distributed, so maybe one could in fact use the normal distri-
bution, also as an approximate sampling distribution in this case.

Example 4.12 Nutrition study: comparing medians assuming nor-
mal distributions

Let us compare the median energy levels from the two-sample nutrition data from
Example 3.46. And let us do this still assuming the normal distribution as we also
assumed in the previous example. First we read in the data:

Read the data
xA = np.array([7.53, 7.48, 8.08, 8.09, 10.15, 8.4, 10.88, 6.13, 7.9])
xB = np.array([9.21, 11.51, 12.79, 11.85, 9.97, 8.79, 9.69, 9.68, 9.19])
nA = len(xA)
nB = len(xB)

Then we do the two-sample median comparison by the parametric, normal based,

Chapter 4 4.2 THE PARAMETRIC BOOTSTRAP 21

bootstrap:

Set the number of simulations
k = 100000

1. Simulate k samples each with nA=9 observations from a
normal distribution with the estimate parameters for group A
simAsamples = stats.norm.rvs(loc=xA.mean(), scale=xA.std(ddof=1) , size=(k,nA))
simAsamples = pd.DataFrame(simAsamples)

2. Simulate k samples each with nB=9 observations from a
normal distribution with the estimate parameters for group B
simBsamples = stats.norm.rvs(loc=xB.mean(), scale=xB.std(ddof=1) , size=(k,nB))
simBsamples = pd.DataFrame(simBsamples)

3. Compute the difference between the two simulated medians - k times
simDifmedians = simAsamples.median(axis=1) - simBsamples.median(axis=1)

4. Find the two relevant quantiles of the k generated differences in medians
print(np.quantile(simDifmedians,[0.025,0.975],
method=’averaged_inverted_cdf’))

[-3.617 -0.401]

Thus, we accept that the difference between the two medians is somewhere between
0.4 and 3.6, and confirming the group difference that we also found in the means, as
the 0 is not included in the interval.

Note the differences in the Python code compared to the previous bootstrapping
example: we use the stats.expon.rvs-function instead of the stats.norm.rvs-
function and change the method from .mean to .median.

Remark 4.13 Hypothesis testing by simulation based confidence
intervals

We have also seen that even though the simulation method boxes given are
providing confidence intervals: we can also use this for hypothesis testing,
by using the basic relation between hypothesis testing and confidence in-
tervals. A confidence interval includes the ’acceptable’ values, and values
outside the confidence interval are the ’rejectable’ values.

Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 22

4.3 The non-parametric bootstrap

4.3.1 Introduction

In the introduction to the parametric bootstrap section above it was discussed
that another approach instead of finding the ’right’ distribution to use is to not
assume any distribution at all. This can be done, and a way to do this simula-
tion based is called the non-parametric bootstrap and is presented in this section.
The section is structured as the parametric bootstrap section above – includ-
ing the similar subsections and similar method boxes. So there will be two
method boxes in this section: one for the one-sample analysis and one for the
two-sample analysis.

In fact, the non-parametric approach could be seen as the parametric approach
but substituting the density/distribution used for the simulation by the ob-
served distribution of the data, that is, the empirical cumulative distribution
function (ecdf), cf. Chapter 1. In practice this is carried out by (re)-sampling the
data we have again and again: To get the sampling distribution of the mean (or
any other feature) based on the n observations that we have in our given sam-
ple, we simply again and again take new samples with n observations from the
one we have. This is done ”with replacement” such that the ”new” samples,
from now on called the bootstrap samples would contain some of the original
observations in duplicates (or more) and others will not be there.

4.3.2 One-sample confidence interval for µ

We have the sample: x1, . . . , xn.

The 100(1− α)% confidence interval for µ determined by the non-parametric
bootstrap is first exemplified:

Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 23

Example 4.14 Women’s cigarette consumption

In a study women’s cigarette consumption before and after giving birth is explored.
The following observations of the number of smoked cigarettes per day were ob-
served:

before after before after
8 5 13 15

24 11 15 19
7 0 11 12

20 15 22 0
6 0 15 6

20 20

This is a typical paired t-test setup, as discussed in Section 3.2.3, which then was
handled by finding the 11 differences and thus transforming it into a one-sample
setup. First we read the observations into Python and calculate the differences by:

Read the data and calculate the difference for each woman before and after
x1 = np.array([8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15])
x2 = np.array([5, 11, 0, 15, 0, 20, 15, 19, 12, 0, 6])
dif = x1-x2
print(dif)

[3 13 7 5 6 0 -2 -4 -1 22 9]

There is a random-sampling function in the NumPy package (which again is based
on a uniform random number generator): np.random.choice. Eg. you can get
5 repeated samples with replacement by: (Note that the argument replace is
true by default. Sampling without replacement can thus be done by specifying
replace=false.)

np.random.choice(dif,size=(5,len(dif)))

array([[-4, 5, 0, -1, 7, -2, -2, 5, 0, -2, 3],
[3, -1, 5, -2, 9, 13, -2, -1, 0, 13, 9],
[6, -2, 22, 7, -4, 7, 7, 5, 9, 5, 22],
[-1, 5, 6, -1, 5, -1, 7, 3, 3, 6, 6],
[-4, 7, -2, -2, 3, 7, -2, -2, 9, 13, 22]])

Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 24

Explanation: the first argument, dif, defines the sampling space, and the second ar-
gument, size=(5,len(dif)), defines the number of bootstrap samples, 5, and their
respective sizes, len(dif).

One can then run the following to get a 95% confidence interval for µ based on
k = 100000:

Set the number of simulations
k = 100000

Simulate k samples each with 11 observations by
sampling with replacement from the data
simsamples = np.random.choice(dif,size=(k,len(dif)))

Compute the mean in each of the k samples
simmeans = simsamples.mean(axis=1)

Find the two relevant quantiles of the k generated meeans
print(np.quantile(simmeans,[0.025,0.975],
method=’averaged_inverted_cdf’))

[1.364 9.818]

Explanation: The np.random.choice-function is called 100.000 times and the results
collected in an 11× 100.000 matrix. Then in a single call the 100.000 averages are
calculated and subsequently the relevant quantiles found.

Note, that we use the similar three steps as above for the parametric bootstrap, with
the only difference that the simulations are carried out by the re-sampling the given
data rather than from some probability distribution.

4.3.3 One-sample confidence interval for any feature

What we have just done can be more generally expressed as follows:

Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 25

Method 4.15 Confidence interval for any feature θ by non-
parametric bootstrap

Assume we have actual observations x1, . . . , xn:

1. Simulate k samples of size n by randomly sampling among the avail-
able data (with replacement)

2. Calculate the statistic θ̂ in each of the k samples θ̂∗1 , . . . , θ̂∗k

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

Example 4.16

Let us find the 95% confidence interval for the median cigarette consumption change
in the example from above:

The 95% CI for the median change
k = 100000
simsamples = pd.DataFrame(np.random.choice(dif,size=(k,len(dif))))
simmedians = simsamples.median(axis=1)
print(np.quantile(simmedians,[0.025,0.975],
method=’averaged_inverted_cdf’))

[-1.000 9.000]

4.3.4 Two-sample confidence intervals

We now have two random samples: x1, . . . , xn1 and y1, . . . , yn2 . The 100(1− α)%
confidence interval for θ1 − θ2 determined by the non-parametric bootstrap is
defined as:

Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 26

Method 4.17 Two-sample confidence interval for θ1 − θ2 by non-
parametric bootstrap

Assume we have actual observations x1, . . . , xn1 and y1, . . . , yn2 :

1. Simulate k sets of 2 samples of n1 and n2 observations from the respec-
tive groups (with replacement)

2. Calculate the difference between the features in each of the k samples
θ̂∗x1 − θ̂∗y1, . . . , θ̂∗xk − θ̂∗yk

3. Find the 100(α/2)% and 100(1 − α/2)% quantiles for these,
q∗100(α/2)% and q∗100(1−α/2)% as the 100(1 − α)% confidence interval:[
q∗100(α/2)%, q∗100(1−α/2)%

]

Example 4.18 Teeth and bottle

In a study it was explored whether children who received milk from bottle as a child
had worse or better teeth health conditions than those who had not received milk
from the bottle. For 19 randomly selected children it was recorded when they had
their first incident of caries:

bottle age bottle age bottle Age
no 9 no 10 yes 16
yes 14 no 8 yes 14
yes 15 no 6 yes 9
no 10 yes 12 no 12
no 12 yes 13 yes 12
no 6 no 20
yes 19 yes 13

One can then run the following to obtain a 95 % confidence interval for µ1−µ2 based
on k = 100000:

Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 27

Reading in "no bottle" group
x = np.array([9, 10, 12, 6, 10, 8, 6, 20, 12])
Reading in "yes bottle" group
y = np.array([14,15,19,12,13,13,16,14,9,12])
Number of simulations
k = 100000
Simulate each sample k times
simxsamples = pd.DataFrame(np.random.choice(x,size=(k,len(x))))
simysamples = pd.DataFrame(np.random.choice(y,size=(k,len(y))))
Calculate the sample mean differences
simmeandifs = simxsamples.mean(axis=1) - simysamples.mean(axis=1)
Quantiles of the differences gives the CI
print(np.quantile(simmeandifs,[0.025,0.975],
method=’averaged_inverted_cdf’))

[-6.211 -0.122]

Example 4.19

Let us make a 99% confidence interval for the difference of medians between the
two groups in the tooth health example:

CI for the median differences
simmediandifs = simxsamples.median(axis=1) - simysamples.median(axis=1)
print(np.quantile(simmediandifs,[0.005,0.995],
method=’averaged_inverted_cdf’))

[-8.000 0.000]

Chapter 4 4.3 THE NON-PARAMETRIC BOOTSTRAP 28

Remark 4.20 Warning: Bootstrapping may not always work well
for small sample sizes!

The bootstrapping idea was presented here rather enthusiastically as an al-
most magic method that can do everything for us in all cases. This is not
the case. Some statistics are more easily bootstrapped than others and gen-
erally non-parametric bootstrap will not work well for small samples. The
inherent lack of information with small samples cannot be removed by any
magic trick. Also, there are more conceptually difficult aspects of bootstrap-
ping for various purposes to improve on some of these limitations, see the
next section. Some of the "naive bootstrap" CI interval examples introduced
in this chapter is likely to not have extremely good properties – the coverage
percentages might not in all cases be exactly at the aimed nominal levels.

Chapter 4 Glossaries 29

Glossaries

Empirical cumulative distribution [Empirisk fordeling] The empirical cumu-
lative distribution function Fn is a step function with jumps i/n at obser-
vation values, where i is the number of identical observations at that value
22

Exponential distribution [Eksponential fordelingen] The usual application of
the exponential distribution is for describing the length (usually time) be-
tween events which, when counted, follows a Poisson distribution 9, 10,
12, 20

Histogram [Histogram] The default histogram uses the same width for all classes
and depicts the raw frequencies/counts in each class. By dividing the raw
counts by n times the class width the density histogram is found where
the area of all bars sum to 1 2, 11, 14, 16

Maximum likelihood [Estimator baseret på maximum likelihood metoden] 10,
13, 18

Median [Median, stikprøvemedian] The median of population or sample (note,
in text no distinguishment between population median and sample median)
9, 12, 13

Non-parametric (test) [Ikke-parametriske (tests)] 2, 9, 22, 25

Normal distribution [Normal fordeling] 1–3, 9, 10, 17, 20

Chapter 4 Acronyms 30

Acronyms

ANOVA Analysis of Variance Glossary: Analysis of Variance

cdf cumulated distribution function Glossary: cumulated distribution function

CI confidence interval 9, 10, 12–15, 18, 21, 22, 25, Glossary: confidence interval

CLT Central Limit Theorem 12, Glossary: Central Limit Theorem

IQR Inter Quartile Range 13, Glossary: Inter Quartile Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function

	4 Simulation Based Statistics
	4.1 Probability and Simulation
	4.1.1 Introduction
	4.1.2 Simulation as a general computational tool
	4.1.3 Propagation of error

	4.2 The parametric bootstrap
	4.2.1 Introduction
	4.2.2 One-sample confidence interval for
	4.2.3 One-sample confidence interval for any feature assuming any distribution
	4.2.4 Two-sample confidence intervals assuming any distributions

	4.3 The non-parametric bootstrap
	4.3.1 Introduction
	4.3.2 One-sample confidence interval for
	4.3.3 One-sample confidence interval for any feature
	4.3.4 Two-sample confidence intervals

	Glossaries
	Acronyms

