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In Chapter 5 we described the linear regression model, when the outcome (Y) is
a linear function of one regressor (x). It is natural to extend this model to include
more than one regressor, in general we can write

Yi = β0 + β1x1,i + · · ·+ βpxp,i + εi, εi ∼ N(0, σ2), (6-1)

where as usual we assume that the residuals (εi) are independent and identi-
cally distributed (i.i.d.) normal random variables with zero mean and some
unknown constant variance (σ2). Note, that this is the assumption for all ran-
dom variable error terms in models presented in this chapter, however it is not
noted for every model.

The model in Equation (6-1) is referred to as the General Linear Model (GLM),
and is closely related to the ANOVA covered in a later chapter. As we will see
in Section 6.2, we can also use the approach to approximate non-linear functions
of the regressors, i.e.

Yi = f (xi) + εi, εi ∼ N(0, σ2). (6-2)

The optimal set of parameters for the multiple linear regression model is found
by minimising the residual sum of squares

RSS(β0, . . . , βp) =
n

∑
i=1

[
Yi − (β0 + β1x1,i + · · ·+ βpxp,i)

]2 , (6-3)

where n is the number of observations. The general problem is illustrated in
Figure 6.1, where the black dots represent the observations (yi), the blue and red
lines represent errors (ei) (the ones we minimize), and the surface represented
by the grey lines is the optimal estimate (with p = 2)

ŷi = β̂0 + β̂1x1,i + β̂2x2,i, (6-4)

or

yi = ŷi + ei, (6-5)

again we put a “hat” on the parameters to emphasize that we are dealing with
parameter estimates (or estimators), as a result of minimising Equation (6-3)
with respect to β0, . . . , βp.

Let’s have a look at a small example:
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Figure 6.1: Conceptual plot for the multiple linear regression problem (red lines,
ei > 0, blue lines (ei < 0).
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Example 6.1

The car manufacture in Example 5.1 in Chapter 5 constructed a linear model for
fuel consumption as a function of speed, now a residual analysis revealed that the
residuals were not independent of the fitted values and therefore the model should
be extended. It is realized that the fuel consumption is a function of wind speed as
well as the speed of the car, and a new model could be formulated as

Yi = β0 + β1x1,i + β2x2,i + ε i (6-6)

where x1,i is the speed, and x2,i is the wind speed (relative to the car). Another
possibility is that the model should in fact not be linear in the speed, but rather
quadratic

Yi = β0 + β1x1,i + β2x2
1,i + ε i (6-7)

= β0 + β1x1,i + β2x2,i + ε i, (6-8)

where x2,i is now the squared speed. Both models ((6-6) and (6-7)) are linear in the
parameters (β0, β1, β2).

The example above illustrate that linearity refers to linearity in the parameters,
not the regressors. E.g. the model

Yi = β0 + β2 log(xi) + εi, (6-9)

is a linear model, while

Yi = β0 + log(xi + β2) + εi, (6-10)

is not a linear model.

6.1 Parameter estimation

Just as in the case of simple linear regression the optimal parameters are the
parameters that minimize the residual sum of squares (RSS), this is equivalent
to equating the partial derivatives of RSS (Equation (6-3)) with zero, i.e.

∂RSS
∂β j

= 0; j = 0, 1, . . . , p, (6-11)
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which will give us p + 1 equations (the partial derivatives) in p + 1 unknowns
(the parameters)

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)

]
= 0, (6-12)

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)x1,i

]
= 0, (6-13)

...

2
n

∑
i=1

[
yi − (β̂0 + β̂1x1,i + · · ·+ β̂pxp,i)xp,i

]
= 0, (6-14)

the Equations (6-12)-(6-14) are referred to as the normal equations, and as we
can see these are a system of linear equations and thus best solved by methods
of linear algebra. The matrix formulation is covered in Section 6.6, but for now
we will just assume that Python is able to solve the normal equations and give
the correct parameter estimates, standard errors for the parameter estimates,
etc.

When the εi’s are independent identically normally distributed, we can con-
struct tests for the individual parameters, assuming we know the parameter
estimates and their standard errors:

Theorem 6.2 Hypothesis tests and confidence intervals

Suppose the we are given parameter estimates (β̂0, . . . , β̂p) and their corre-
sponding standard errors (σ̂β0 , . . . , σ̂βp), then under the null hypothesis

H0,i : βi = β0,i, (6-15)

the t-statistic

Ti =
β̂i − β0,i

σ̂βi

, (6-16)

will follow the t-distribution with n− (p + 1) degrees of freedom, and hy-
pothesis testing and confidence intervals should be based on this distribu-
tion. Further, a central estimate for the residual variance is

σ̂2 =
RSS(β̂0, . . . , β̂p)

n− (p + 1)
. (6-17)

The interpretation of multiple linear regression in Python is illustrated in the
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following example:

Example 6.3

The data used for Figure 6.1 is given in the table below

x1 0.083 0.409 0.515 0.397 0.223 0.292 0.584 0.491 0.923 0.280
x2 0.625 0.604 0.077 0.414 0.343 0.202 0.840 0.266 0.831 0.385
y 0.156 1.234 0.490 1.649 0.500 0.395 1.452 0.416 1.390 0.234

x1 0.772 0.857 0.758 0.850 0.409 0.055 0.578 0.745 0.886 0.031
x2 0.821 0.308 0.440 0.865 0.111 0.970 0.192 0.939 0.149 0.318
y 1.574 0.349 1.287 1.709 0.323 1.201 1.210 1.787 0.591 0.110

We assume the model

Yi = β0 + β1x1,i + β2x2,i + ε i, ε i ∼ N(0, σ2). (6-18)

In order to estimate parameters we would write:

# Read data
data = {
’x1’ : [0.083, 0.409, 0.515, 0.397, 0.223, 0.292, 0.584, 0.491, 0.923,

0.280, 0.772, 0.857, 0.758, 0.850, 0.409, 0.055, 0.578, 0.745,
0.886, 0.031],

’x2’ : [0.625, 0.604, 0.077, 0.414, 0.343, 0.202, 0.840, 0.266, 0.831,
0.385, 0.821, 0.308, 0.440, 0.865, 0.111, 0.970, 0.192, 0.939,
0.149, 0.318],

’y’ : [0.156, 1.234, 0.490, 1.649, 0.500, 0.395, 1.452, 0.416, 1.390,
0.234, 1.574, 0.349, 1.287, 1.709, 0.323, 1.201, 1.210, 1.787,
0.591, 0.110]

}

df = pd.DataFrame(data)
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# Parameter estimation
fit = smf.ols(formula = ’y ~ x1 + x2’, data = df).fit()

# Summary of fit (parameter estimates, standard error, p-values, etc.)
print(fit.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.632
Model: OLS Adj. R-squared: 0.589
No. Observations: 20 F-statistic: 14.62
Covariance Type: nonrobust Prob (F-statistic): 0.000203
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -0.1176 0.212 -0.556 0.586 -0.564 0.329
x1 0.8274 0.304 2.719 0.015 0.185 1.470
x2 1.2393 0.293 4.236 0.001 0.622 1.857
==============================================================================

The interpretation of the output is exactly the same as in the simple linear regression.
The first column gives the parameter estimates (β̂0, β̂1, β̂2), second column gives the
standard error of the parameter estimates (σ̂β0 , σ̂β1 , σ̂β2), third column gives the t-
statistics for the standard hypothesis H0,i : βi = 0, column four gives the p-value
for the two-sided alternative, and finally columns 5-6 give 95% confidence intervals.
We can therefore conclude that the effect of x1 and x2 are both significant on a 5%
confidence level.
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Method 6.4 Level α t-tests for parameters

1. Formulate the null hypothesis: H0,i : βi = β0,i, and the alternative hy-
pothesis H1,i : βi 6= β0,i

2. Compute the test statistic tobs,βi =
β̂i−β0,i

σ̂βi

3. Compute the evidence against the null hypothesis

p-valuei = 2P(T > |tobs,βi |) (6-19)

4. If the p-valuei < α reject H0,i, otherwise accept H0,i

In many situations we will be more interested in quantifying the uncertainty of
the parameter estimates rather than testing a specific hypothesis. This is usually
given in the form of confidence intervals for the parameters:

Method 6.5 Parameter confidence intervals

(1− α) confidence interval for βi is given by

β̂i ± t1−α/2 σ̂βi , (6-20)

where t1−α/2 is the (1 − α/2)-quantile of a t-distribution with n − (p + 1)
degrees of freedom.

Remark 6.6 (On finding β̂i and σβ̂i
in methods 6.4 and 6.5)

In Chapter 5 we were able to formulate the exact formulas for β̂i and σ̂β̂i
, in

a multiple linear regression setting we simply use Python (smf.ols), to find
these values.
The explicit formulas are however given in the matrix formulation of the
linear regression problem in Section 6.6.
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Example 6.7

For our example the 95% confidence intervals become (t1−α/2 = 2.110)

Iβ0 = −0.118± 2.110 · 0.212, (6-21)

Iβ1 = 0.827± 2.110 · 0.304, (6-22)

Iβ2 = 1.239± 2.110 · 0.293, (6-23)

or using the software (for β0):

# Calculations
CI = - 0.118 + np.array([-1,1]) * stats.t.ppf(0.975, df = 17) * 0.212
print(CI)

[-0.565 0.329]

or directly using the highlevel method (for β0, β1, and β2):

print(fit.conf_int(alpha=0.05))

0 1
Intercept -0.564307 0.329042
x1 0.185371 1.469529
x2 0.621989 1.856559

The examples above illustrates how we can construct confidence intervals for
the parameters and test hypotheses without having to implement the actual
estimation ourselves.

6.1.1 Confidence and prediction intervals for the line

Just as for the simple linear regression model we will often be interested in pre-
diction of future outcome of an experiment, and as usual we will be interested
in quantifying the uncertainty of such an experiment. The expected value of a
new experiment (with x1 = x1,new, . . . , xp = xp,new) is

ŷnew = β̂0 + β̂1x1,new + . . . + β̂pxp,new. (6-24)
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In order to quantify the uncertainty of this estimate we need to calculate the
variance of ŷnew, in Section 5.3 we saw that this variance is a function of: 1) the
variance of the parameters, 2) the covariance between the parameters, and 3)
xnew. This is also true in the multiple linear regression case, except that xnew
is now a vector and we need to account for pairwise covariance between all
parameter estimators. This analysis is most elegantly done with matrix for-
mulation and is covered in Section 6.6. We can however do this using Python
without dealing with the covariances explicitly.

This is illustrated in the following example:

Example 6.8

With reference to Example 6.3 suppose we want to predict the expected value of
Y at (x1,new, x2,new) = (0.5, 0.5) and at (x1,new, x2,new) = (1, 1), we would also like
to know the standard error of the prediction and further the confidence and the
prediction intervals. The standard error of the prediction can be calculated by:

# # New data
new_data = pd.DataFrame({’x1’: [0.5, 1],’x2’: [0.5, 1]})

# # Prediction and confidence interval
pred = fit.get_prediction(new_data).summary_frame(alpha=0.05)
print(round(pred,3))

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 0.916 0.085 0.737 1.095 0.098 1.734
1 1.949 0.214 1.497 2.401 1.032 2.867

The data-frame “new_data” is the points where we want to predict the outcome, the
object “pred” has the fitted values (mean) at the points in “new_data”, the standard
errors for the predictions (mean_se), the upper and lower limits of the confidence
intervals (mean_ci_upper and mean_ci_lower), and the upper and lower limits of
the prediction intervals (obs_ci_upper and obs_ci_lower).

Notice that the standard error for ŷnew is much larger for the point (x1,new, x2,new) =

(1, 1) than for the point (x1,new, x2,new) = (0.5, 0.5), this is because the (1,1) point is
far from the average of the regressors, while the point (0.5,0.5) is close to the average
value of the regressors.

Now, we are actually able to calculate confidence and prediction intervals for the
two points, the confidence intervals become

CI1 = 0.9157± t1−α/2 · 0.08477, (6-25)

CI2 = 1.9491± t1−α/2 · 0.21426, (6-26)
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Figure 6.2: Standard error for ŷnew (blue surface) and standard error for ynew
(red surface).

and the prediction intervals become (add the variance of Ŷnew and σ̂2)

PI1 = 0.9157± t1−α/2 ·
√

0.084772 + 0.37842, (6-27)

PI2 = 1.9491± t1−α/2 ·
√

0.214262 + 0.37842, (6-28)

where t1−α/2 is obtained from a t-distribution with 17 degrees of freedom.

The calculations in Python is exemplified for the first prediction interval below

p_i = 0.9157 + np.array([-1,1]) * stats.t.ppf(0.975, df=17) * np.sqrt(0.08477**2 + 0.3784**2)
np.round(p_i, 3)

array([0.098, 1.734])

We saw in the example above that the standard error for the fit is large when
we are far from the center of mass for the regressors, this is illustrated in Figure
6.2.
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Method 6.9 Intervals for the line (by Python)

The (1-α) confidence and prediction intervals for the line β̂0 + β̂1x1,new +
· · ·+ β̂pxp,new are calculated in Python by

# Confidence and Prediction interval
fit.get_prediction(new_data).summary_frame(alpha=alpha)

Remark 6.10

Explicit formulas for confidence and prediction intervals are given in Section
6.6.

6.2 Curvilinear regression

Suppose we are given pairs of values of x and y and there seems to be informa-
tion in x about y, but the relation is clearly non-linear

Yi = f (xi) + εi, εi ∼ N(0, σ2), (6-29)

and the non-linear function f (x) is unknown to us. The methods we have dis-
cussed don’t apply for non-linear functions, and even if we could do non-linear
regression we would not know which function to insert. We do however know
from elementary calculus that any function can be approximated by its Taylor
series expansion

f (x) ≈ f (0) + f ′(0) · x +
f ′′(0)

2
x2 + · · ·+ f (p)(0)

p!
xp, (6-30)

now replace the Taylor series coefficients
(

f (j)(0)
j!

)
by β j and insert (6-30) in

(6-29) to get

Yi = β0 + β1x + β2x2 + · · ·+ βpxp + εi

= β0 + β1x1 + β2x2 + · · ·+ βpxp + εi,
(6-31)

where xj = xj, we refer to this method as curvilinear regression. The method is
illustrated in the following example:
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Example 6.11 Simulation of non-linear model

We simulate the following model

Yi = sin(πxi) + ε i, ε i ∼ N(0, 0.12), (6-32)

with x ∈ [0, 1] by:

np.random.seed(12657)
n = 200
x = np.random.uniform(size = n)
y = np.sin(np.pi * x) + np.random.normal(0, 0.1,size=n)
df_sim = pd.DataFrame({’y’: y,’x1’ : x, ’x2’ : x**2})

Yi is a non-linear function of x but lets try to estimate parameters in the simple linear
regression model

Yi = β0 + β1xi + ε i, ε i ∼ N(0, σ2), (6-33)

and find the 95% confidence interval for the parameters:

fit_sim = smf.ols(formula = ’y ~ x1’, data = df_sim).fit()
print(round(fit_sim.conf_int(alpha=0.05),3))

0 1
Intercept 0.510 0.690
x1 -0.097 0.211

We see that the 95% confidence interval for β1 covers zero, and we can therefore
not reject the null hypothesis that β1 is zero. Now include a quadratic term in x1 to
approximate the non-linear function by the model

Yi = β0 + β1xi + β2x2
i + ε i, ε i ∼ N(0, σ2), (6-34)

fit_sim2 = smf.ols(formula = ’y ~ x1 + x2’, data = df_sim).fit()
print(round(fit_sim2.conf_int(alpha=0.05),3))

0 1
Intercept -0.095 -0.006
x1 3.885 4.303
x2 -4.292 -3.883
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Now we see that all parameters are significantly different from zero on a 5% confi-
dence level. The plot below shows the residuals for the two models as a function of
the fitted values:
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Remark 6.12

In general one should be careful when extrapolation models into areas
where there is no data, and this is in particular true when we use curvilinear
regression.

6.3 Collinearity

In statistics collinearity refers to situations where the sample correlation be-
tween the independent variables is high. If this is the case we should be careful
with interpretation of parameter estimates, and often we should actually reduce
the model. Now consider the model

yi = β0 + β1x1 + β2x2 + εi, εi ∼ N(0, σ2), (6-35)

and assume that the sample correlation between x1 and x2 is exactly equal 1,
this implies that we can write x2 = a + bx1, inserting in (6-35) gives

yi = β0 + β1x1 + β2(a + bx1) + εi (6-36)
= β0 + β2a + (β1 + β2b)x1 + εi, (6-37)

which shows that we can only identify β0 + β2a and (β1 + β2b), so the model is
essentially a simple linear regression model. It could also have been the other
way around, i.e. x1 = a + bx2, and thus it seems that it is not possible to dis-
tinguish between x1 and x2. In real life application the correlation between the
regressors is rarely 1, but rather close to 1 and we need to handle this case as
well. In actual practice a simple way to handle this is, by adding or removing
one parameter at the time. Other procedures exist, e.g. using the average of the
regressors, or using principle component regression, we will not discuss these
approaches further here.

A small example illustrates the principle:

Example 6.13 Simulation

Consider the model

Yi = β0 + β1x1 + β2x2 + ε i, ε i ∼ N(0, σ2), (6-38)

with data generated from the following code:
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np.random.seed(200)
n = 100
x1 = np.random.uniform(size = n)
x2 = x1 + np.random.normal(0, 0.01,size=n)
y = x1 + x2 + np.random.normal(0, 0.5,size=n)
df_sim = pd.DataFrame({’y’: y,’x1’ : x1, ’x2’ : x2})

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.scatter(x1,y)
ax2.scatter(x2,y)
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Clearly, both x1 and x2 contain information about y, but our usual linear regression
gives:

fit_sim = smf.ols(formula = ’y ~ x1 + x2’, data = df_sim).fit()
print(round(fit_sim.conf_int(alpha=0.05),3))

0 1
Intercept -0.197 0.247
x1 -14.847 10.061
x2 -8.057 16.898

we see that none of the parameters are significant (on a 5% level), but if we remove
x1 (this is the one with the highest p-value) from the model we get:
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fit_sim2 = smf.ols(formula = ’y ~ x2’, data = df_sim).fit()
print(fit_sim2.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.567
Model: OLS Adj. R-squared: 0.562
No. Observations: 100 F-statistic: 128.2
Covariance Type: nonrobust Prob (F-statistic): 1.69e-19
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0283 0.111 0.255 0.799 -0.192 0.249
x2 2.0240 0.179 11.322 0.000 1.669 2.379
==============================================================================

and the slope is now highly significant.

The lesson learned from the example above is that we should always try to
reduce the model before concluding that individual parameters are zero. Model
development is a partly manual process, where the end result might depend on
the selection strategy. The usual strategies are: backward selection, where we start
by the most complicated model we can think of and remove one term at a time
(this is what we did in the example above), and forward selection where we start
by a simple model and include new terms one by one.

Remark 6.14 Interpretation of parameters

In general we can interpret the parameters of a multiple linear regression
model as the effect of the variable given the other variables. E.g. β j is the
effect of xj when we have accounted for other effects (xi, i 6= j). This inter-
pretation is however problematic when we have strong collinearity, because
the true effects are hidden by the correlation.

An additional comment on the interpretation of parameters in the example
above is: since the data is simulated, we know that the true parameters are
β1 = β2 = 1. In the full model we got β̂1 ≈-2.40 and β̂2 ≈ 4.42. Both of these
numbers are clearly completely off, the net effect is however β̂1 + β̂2 ≈2.02 (be-
cause x1 ≈ x2). In the reduced model we got β̂2 =2.02, which is of course also
wrong, but nearly the same level, and only holds because x1 ≈ x2.
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6.4 Residual analysis

Just as for the simple linear regression model we will need to justify that the
assumptions in the linear regression model holds. This is handled by q-q plots,
and considering the relation between the residuals and the fitted values. This
analysis is exactly the same as for the simple linear regression in Section 5.7.

We saw that plotting the residuals as a function of fitted values could reveal
systematic dependence, which imply there are un-modelled effects that should
be included in the model. The question is of course how we can identify such
effects. One way is to plot the residuals as a function of potential regressors,
which are not included. Plotting the residuals as a function of the included
regressors might reveal non-linear effects. Again we illustrate this method by
an example:

Example 6.15 Residuals analysis

Consider the model in the Python script below, the true model is

yi = x1 + 2x2
2 + ε i, ε i ∼ N(0, 0.1252) (6-39)

in a real application the true model is of course hidden to us and we would start by
a multiple linear model with the two effects x1 and x2. Looking at the plots below
also suggests that this might be a good model:

np.random.seed(200)
n = 100
x1 = np.random.uniform(size = n)
x2 = np.random.uniform(size = n)
y = x1 + 2*x2**2 + + np.random.normal(0, 0.125,size=n)
df_sim = pd.DataFrame({’y’: y,’x1’ : x1, ’x2’ : x2})

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
ax1.scatter(x1,y)
ax2.scatter(x2,y)
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Now we fit the model

yi = β0 + β1x1 + β2x2 + ε i, ε i ∼ N(0, σ2), (6-40)

and plot the resulting residuals as a function of the fitted values, and the indepen-
dent variables (x1 and x2). There seems to be a systematic dependence between the
fitted values and the residuals (left plot):

fit_sim = smf.ols(formula = ’y ~ x1 + x2’, data = df_sim).fit()

res = y - fit_sim.fittedvalues
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8,4))

ax1.scatter(fit_sim.fittedvalues,res)
ax2.scatter(x1,res)
ax3.scatter(x2,res)
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The left plot does however not suggest where the dependence comes from. Now
looking at the residuals as a function of x1 and x2 (centre and left plot) reveal that
the residuals seem to be quadratic in x2, and we should therefore include x2

2 in the
model:

x3 = x2**2
df_sim = pd.DataFrame({’y’: y,’x1’ : x1, ’x2’ : x2,’x3’: x3})
fit_sim = smf.ols(formula = ’y ~ x1 + x2 +x3’, data = df_sim).fit()

res = y - fit_sim.fittedvalues

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8,4))
ax1.scatter(fit_sim.fittedvalues,res)
ax2.scatter(x1,res)
ax3.scatter(x2,res)
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We now see that there is no systematic dependence in the residuals and we can
report the final result.
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print(fit_sim.summary(slim=True))

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.971
Model: OLS Adj. R-squared: 0.970
No. Observations: 100 F-statistic: 1057.
Covariance Type: nonrobust Prob (F-statistic): 2.33e-73
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -0.0100 0.044 -0.230 0.819 -0.097 0.077
x1 1.0166 0.044 23.150 0.000 0.929 1.104
x2 0.1342 0.173 0.774 0.441 -0.210 0.478
x3 1.8668 0.169 11.056 0.000 1.532 2.202
==============================================================================

Now we can actually see that we find parameter values close to the true ones, further
the slope related to x2 and the intercept is not significant, however usually when x2

2
have a significant parameter we would also keep x2 in the model, the same comment
apply to the intercept, that we would usually always include in the model.
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6.5 Linear regression in Python

Method 6.16 below gives a practical summary of Chapter 5 and 6 with refer-
ences to the applied R-functions.

Method 6.16

This method box is a very short guide to Python and linear regression.

Data Physical/mechanistic understanding

1: (Re)formulate linear or curve-linear model:
Yk = x1,k + ... + xp,k + εk ; εk ∼ N(0, σ2)

2: Estimate parameters with:
> fit <- smf.ols(y ˜ x1 + · · · + xp, data = df).fit

3: Residual analysis using e.g.:
> sm.qqplot(fit.resid.values) # Normal assumption
> scatter(fit.fittedvalues, fit.resid.values) # Checking for structures
> scatter(x1,fit.resid.values # Identify structures

4: Analyse model using:
> fit.summary(slim=TRUE) # (p-values)
> confint(model) # (confidence interval for parameters)
Collinearity present? Simplify (using e.g. backward selection)

5: Calculate confidence and prediction interval using:
> fit.get.prediction(new_data).summary_frame(alpha=alpha)
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6.6 Matrix formulation

The multiple linear regression problem can be formulated in vector-matrix no-
tation as

Y = Xβ + ε, ε ∼ N(0, σ2I), (6-41)

or Y1
...

Yn

 =

1 x1,1 · · · xp,1
...

...
...

1 x1,n · · · xp,n


β0

...
βp

+

ε1
...

εn

 , εi ∼ N(0, σ2). (6-42)

Notice, that the formulation in (6-41) is exactly the same as we saw in Section
5.5.

The residual sum of squares are calculated by

RSS = εTε = (y− Xβ)T(y− Xβ), (6-43)

and the parameter estimates are given by:

Theorem 6.17

The estimators of the parameters in the simple linear regression model are
given by

β̂ = (XTX)−1XTY , (6-44)

and the covariance matrix of the estimates is

V[β̂] = σ2(XTX)−1, (6-45)

and central estimate for the residual variance is

σ̂2 =
RSS

n− (p + 1)
. (6-46)

The proof of this theorem follows the exact same arguments as the matrix for-
mulation of the simple linear regression model in Chapter 5 and hence it is
omitted here.

Marginal tests (H0 : βi = βi,0) can also in the multiple linear regression case be
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constructed by

β̂i − βi,0√
(Σ̂β)ii

∼ t(n− (p + 1)). (6-47)

6.6.1 Confidence and prediction intervals for the line

Now suppose that we want to make a prediction at a new point

xnew = [1, x1,new, . . . , xp,new],

in order to construct confidence and prediction intervals we calculate the vari-
ance of Ŷnew

V(Ŷnew) = V(xnewβ̂)

= xnew V(β̂)xT
new

= σ2xnew(XTX)−1xT
new,

(6-48)

in practice we will of course replace σ2 with its estimate (σ̂2), and hence use
quantile of the appropriate t-distribution (and standard errors rather than vari-
ances) to calculate confidence intervals. The variance of a single prediction is
calculated by

V(Ynew) = V(xnewβ̂ + εnew)

= xnew V(β̂)xT
new + σ2

= σ2(1 + xnew(XTX)−1xT
new).

(6-49)

The calculations above illustrate that the derivations of variances are relatively
simple, when we formulate our model in the matrix-vector notation.
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Glossaries

Alternative hypothesis [Alternativ hypotese] The alternative hypothesis (H1)
is oftern the negation of the null hypothesis 7

Correlation [Korrelation] The sample correlation coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Covariance
14, 16

Covariance [Kovarians] The sample covariance coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Correlation
9, 22

Degrees of freedom [Frihedsgrader] The number of "observations" in the data
that are free to vary when estimating statistical parameters often defined
as n− 1 4, 7, 10

Linear regression [Lineær regression (-sanalyse)] 3, 6, 8, 12, 15, 17, 22

Multiple linear regression [Multipel lineær regression (-sanalyse)] 1, 4, 7, 9, 22

Null hypothesis [Nulhypotese (H0)] 4, 7, 12

P-value [p-værdi (for faktisk udfald af en teststørrelse)] 6, 7, 15
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Acronyms

ANOVA Analysis of Variance Glossary: Analysis of Variance

cdf cumulated distribution function Glossary: cumulated distribution function

CI confidence interval 4, 7–9, 12, 23, Glossary: confidence interval

CLT Central Limit Theorem Glossary: Central Limit Theorem

IQR Inter Quartile Range Glossary: Inter Quartile Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function
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