Chapter 9

The general linear model

Exercises

Contents

9 The general linear model Exercises

9.1	Proof of Theorem 9.14
9.2	Independence and correlation
9.3	Proff of Eq. (9-50)
9.4	Proof of Corollary 9.18
9.5	Projection matrix
9.6	Proof of Lemma 9.22
9.7	Correlation
9.8	Lag-1 autocorrelation
9.9	Orthogonal projections
9.10	Proof of Corollary 9.29
9.11	t-test Orthogonal projections
9.12	t-test $\hat{\sigma}^2$ central
9.13	t-test Central estmators under Null-hypothesis
9.14	Nested projections
9.15	t-test parametrization
9.16	An ill conditioned problem 9
9.17	Helmert transformation
9.18	Paired t-test
9.19	2-way Anova sum-constraint 11
9.20	Two-way ANOVA*

1

Chapter 9 9.1 PROOF OF THEOREM ??

9.1 Proof of Theorem 9.14

Exercise 9.1 Proof of Theorem 9.14

a) Prove Theorem 9.14, using the definition in equation (9-38).

9.2 Independence and correlation

Exercise 9.2 Independence and correlation

- a) Simulate Y_1 , X and Y_2 using the setting in Example 9.15.
- b) Check that both Y_1 and Y_2 are normal, and plot Y_2 as a function of Y_1 .
- c) Calculate the correlation between Y_1 and Y_2 and plot Y_2 as a function of Y_1 and comment on the results

9.3 Proff of Eq. (9-50)

Exercise 9.3 Proff of Eq. (9-50)

- a) Prove that rowsums of A in (9-49) is equal zero, i.e. that A1 = 0
- b) Prove Eq. (9-48)
- c) Prove Eq. (9-50).

9.4 Proof of Corollary 9.18

- Exercise 9.4 Proff of Corollary 9.18
 - a) Show that when $Y \sim N_n(\mu, \Sigma)$ then, $Z = \Lambda^{-1/2} V^T(Y \mu) \sim N_n(0, I)$, with V, and Λ as in Lemma 9.3.
 - b) Prove Corollary 9.18.

9.5 Projection matrix

Exercise 9.5 Projection matrix

a) Use exercise 3 to show that A in (9-49) is an orthogonal projection matrix.

9.6 Proof of Lemma 9.22

Exercise 9.6 Proof of Lemma 9.22

a) Use Lemma 9.3, property 1 of Lemma 9.22 and Theorem 9.5 to prove property 2 of Lemma 9.22.

9.7 Correlation

Exercise 9.7 Correlation

a) With *r* as in (9-51) what is the correlation between r_i and r_j ?

9.8 Lag-1 autocorrelation

Exercise 9.8 Lag-1 autocorrelation

Consider the random variables $\epsilon_i \sim N(0, \sigma^2)$, iid. and $t = \{1, ..., n\}$. Now consider the correlation estimate,

$$\hat{\rho}_{\epsilon}(1) = \frac{\sum_{t=1}^{n-1} \epsilon_t \epsilon_{t+1}}{\sum_{t=1}^{n} \epsilon_t^2} = \frac{C}{Q'},\tag{9-1}$$

the idea of the questions below is that show that $\hat{\rho}_{\epsilon}(1) \approx N(0, 1/n)$ by showing that $V[\hat{\rho}_{\epsilon}(1)] \approx 1/n$. $\hat{\rho}_{\epsilon}(1)$ is simpler than $\hat{\rho}(1)$ in (9-129), but for *n* large the behavior is similar.

- a) Show that E[C] = 0, $E[Q] = n\sigma^2$, $V[C] = (n-1)\sigma^4$, $V[Q] = 2n\sigma^4$, and Cov[C,Q] = 0.
- b) Use the result from question a) and non-linear error propagation to show that $V[\hat{\rho}_{\epsilon}(1)] \approx 1/n$, for *n* large.

9.9 Orthogonal projections

Exercise 9.9 Orthogonal projections

a) With H_1 and H_2 as in (9-70), show that $Cov[H_1Z, H_2Z] = 0$. Hint: Use Theorem 9.10 and Exercise 5.

9.10 Proof of Corollary 9.29

Exercise 9.10 Proof of Corollary 9.29

In this exercise we will prove Corollary 9.29 by a series of sub questions.

a) Show that if $Y \sim N(X\beta, \sigma^2 I)$ then

$$\boldsymbol{Y}^{T}(\boldsymbol{I}-\boldsymbol{H}_{1})\boldsymbol{Y}\sim\chi^{2}(n-2). \tag{9-2}$$

Independently of the value of β

b) Show that if $\mathbf{Y} \sim N(\mathbf{1}\mu, \sigma^2 \mathbf{I})$ then

$$\boldsymbol{Y}^{T}(\boldsymbol{H}_{1}-\boldsymbol{H}_{0})\boldsymbol{Y}\sim\chi^{2}(1). \tag{9-3}$$

independently of the value of μ , you may use the the formulation in (9-137) to calculate H_1 , or simply use the fact that $\mathbf{1}H_1 = \mathbf{1}^T$ (see Exercise 11).

c) Show that if $\mathbf{Y} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$ then

$$\boldsymbol{Y}^T \boldsymbol{H}_0 \boldsymbol{Y} \sim \chi^2(1). \tag{9-4}$$

9.11 t-test Orthogonal projections

Exercise 9.11 t-test Orthogonal projections

a) Show that the projection matrices in rhs of (9-141) are orthogonal i.e. $H_0(H_1 - H_0) = 0$, $H_0(I - H_1) = 0$ and $(H_1 - H_0)(I - H_1) = 0$. Hint: you may start by showing that $X_0^T H_1 = X_0^T$. You may use the parametrization (9-137).

Chapter 9 9.12 T-TEST $\hat{\sigma}^2$ CENTRAL

b) Use the result to show that

$$Cov[H_0Y, (H_1 - H_0)Y] = \mathbf{0}$$

$$Cov[H_0Y, (I - H_1)Y] = \mathbf{0}$$

$$Cov[(H_1 - H_0)Y, (I - H_1)Y] = \mathbf{0}$$

(9-5)

and hence that the projected vectors are independent. Also what is the interpretation in trems of fitted values?

9.12 t-test $\hat{\sigma}^2$ central

Exercise 9.12 t-test $\hat{\sigma}^2$ central

a) Show that $\hat{\sigma}^2$ (in Equation (9-147)) is a central estimator for the variance in the LM, and find $V[\hat{\sigma}^2]$.

9.13 t-test Central estmators under Null-hypothesis

Exercise 9.13 t-test Central estmators under Null-hypothesis

Consider the projection matrices for the two sample t-test (equation (9-141)), consider two groups $Y_{1,i} \sim N(\mu_1, \sigma^2)$ and iid., $i = \{1, 2, ..., n_1\}$ and $Y_{2,j} \sim N(\mu_2, \sigma^2)$ and iid., $j = \{1, 2, ..., n_2\}$. Define $Y = [Y_1^T, Y_2^T]^T = [Y_{1,1}, ..., Y_{1,n_1}, Y_{2,1}, ..., Y_{1,n_2}]^T$ and

a) Show that

$$\boldsymbol{Y}^{T}(\boldsymbol{H}_{1} - \boldsymbol{H}_{0})\boldsymbol{Y} = \frac{n_{1}n_{2}}{n_{1} + n_{2}}(\bar{Y}_{1} - \bar{Y}_{2})^{2}$$
(9-6)

- b) Show that $E[\mathbf{Y}^T(\mathbf{H}_1 \mathbf{H}_0)\mathbf{Y}] = \frac{n_1 n_2}{n_1 + n_2}(\mu_1 \mu_2)^2 + \sigma^2$
- Under the assumption $\mu_1 = \mu_2 = \mu$ conclude that $Y^T(H_1 H_0)Y$ is a central estimator for σ^2 , find the variance of this estimator, and compare with the estimator (9-147).

9.14 Nested projections

Exercise 9.14 Nested projections

Let X_i be as in (9-150), i.e.

$$\boldsymbol{X}_i = \begin{bmatrix} \boldsymbol{X}_{i-1} & \boldsymbol{\tilde{X}}_i \end{bmatrix} \tag{9-7}$$

and condider the projection matrices based on $X_{i-1} \in \mathbb{R}^{n \times p_{i-1}}$, and $X_i \in \mathbb{R}^{n \times (p_i+q_i)}$ $(q_i > 0)$

$$H_{i-1} = X_{i-1} (X_{i-1}^T X_{i-1})^{-1} X_{i-1}^T$$

$$H_i = X_i (X_i^T X_i)^{-1} X_i^T$$
(9-8)

a) Show that $X_i^T H_i = X_i^T$.

b) Set $A = (X_i^T X_i)^{-1}$, with

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
(9-9)

with $A_{11} \in \mathbb{R}^{p_i \times p_i}$, $A_{12} = A_{21}^T \in \mathbb{R}^{p_i \times q_i}$, and $A_{22} \in \mathbb{R}^{q_i \times q_i}$, show that A_{kl} solve the equations

$$X_{i-1}^{T}X_{i-1}A_{11} + X_{i-1}^{T}\tilde{X}_{i}A_{21} = I$$

$$X_{i-1}^{T}X_{i-1}A_{12} + X_{i-1}^{T}\tilde{X}_{i}A_{22} = 0$$

$$\tilde{X}_{i}^{T}X_{i-1}A_{11} + \tilde{X}_{i}^{T}\tilde{X}_{i}A_{21} = 0$$

$$\tilde{X}_{i}^{T}X_{i}A_{12} + \tilde{X}_{i}^{T}\tilde{X}_{i}A_{22} = I$$
(9-10)

c) Use the result above to show that $X_{i-1}^T H_i = X_{i-1}^T$.

9.15 t-test parametrization

Exercise 9.15 t-test parametrization

a) Assuming that $Y_{1,i} \sim N(\mu_1, \sigma^2)$ and $Y_{2,j} \sim N(\mu_2, \sigma^2)$ are iid and $i \in \{1, ..., n_1\}$ and $j \in \{1, ..., n_2\}$ formulate an LM (i.e. parametrize X)

$$Y = X\beta + \epsilon; \quad \epsilon \sim N(0, \sigma^2 I, \tag{9-11})$$

with

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n_1} & a\mathbf{1}_{n_1} \\ \mathbf{1}_{n_2} & b\mathbf{1}_{n_2} \end{bmatrix}$$
(9-12)

such that the parametrization is orthogonal and $\hat{\beta}_1 = \frac{1}{n_1+n_2}(n_1\bar{Y}_1 + n_2\bar{Y}_2)$, i.e. the average of all observation, and $\hat{\beta}_2 = \bar{Y}_1 - \bar{Y}_2$.

9.16 An ill conditioned problem

Exercise 9.16 An ill conditioned problem

a) Using the data from Example 9.43 fit parameters for the full model and parameter for a reduced model and compare the parameters values.

9.17 Helmert transformation

Exercise 9.17 Helmert transformation

a) With reference to (9-243) show that

$$T_{HN} = \begin{bmatrix} 1 & -1/2 & -1/3 & -1/4 & \dots & -1/k \\ 1 & 1/2 & -1/3 & -1/4 & \dots & -1/k \\ 1 & 0 & 2/3 & -1/4 & \dots & -1/k \\ 1 & 0 & 0 & 3/4 & \dots & -1/ \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & 0 & \dots & 0 & (k-1)/k \end{bmatrix}, \quad (9-13)$$

b) Using X as in (9-234) show that

$$XT_{HN} = \begin{bmatrix} \mathbf{1} & -\frac{1}{2}\mathbf{1} & -\frac{1}{3}\mathbf{1} & \dots & -\frac{1}{k}\mathbf{1} \\ \mathbf{1} & \frac{1}{2}\mathbf{1} & -\frac{1}{3}\mathbf{1} & \dots & -\frac{1}{k}\mathbf{1} \\ \mathbf{1} & \mathbf{0} & \frac{2}{3}\mathbf{1} & \dots & -\frac{1}{k}\mathbf{1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \dots & \frac{k-1}{k}\mathbf{1} \end{bmatrix}$$
(9-14)

c) Show that

$$(\boldsymbol{X}_{HN}^{T}\boldsymbol{X}_{HN})^{-1} = \frac{1}{n} \begin{bmatrix} \frac{1}{k} & 0 & 0 & \dots & 0\\ 0 & 2 & 0 & \dots & 0\\ 0 & 0 & \frac{3}{2} & \dots & 0\\ \vdots & & \ddots & \vdots\\ 0 & 0 & 0 & \dots & \frac{k}{k-1} \end{bmatrix}$$
(9-15)

d) Use the above to prove (9-244).

9.18 Paired t-test

Exercise 9.18 Paired t-test

- a) Show that the parametrization in (9-259) is an orthogonal parametrization.
- b) Find the parameter estimates based on the desing matrix (9-259).
- c) Find the projection matrix corresponding to the desing matrix (9-259).
- d) Prove (9-262) (Hint: you may use that $\mathbf{Y}_i^T \mathbf{E} = n \bar{Y}_i \mathbf{1}^T$)

9.19 2-way Anova sum-constraint

Exercise 9.19 2-way Anova sum-constraint

a) Find a matrix *T* such that

$$\tilde{\boldsymbol{\beta}} = T\boldsymbol{\beta}$$
 (9-16)

with $\tilde{\boldsymbol{\beta}} = [\mu, \alpha_1, ..., \alpha_k, \beta_1, ..., \beta_l]^T$ and $\boldsymbol{\beta} = [\mu, \alpha_1, ..., \alpha_{k-1}, \beta_1, ..., \beta_{l-1}]^T$, such that the constraints (9-270) are fulfilled.

b) Show that the constraints (9-270) can be realized by the desing matrix in (9-271) (hint use the transformation matrix *T* and the appropriate (non identifiable) desing matrix corresponding to $\tilde{\beta}$).

9.20 Two-way ANOVA*

Exercise 9.20 Two-way ANOVA*

This porpuse of this exercise is to show equation (9-278), this will rely on Kronecker products, and hence solving the exercise require basic understanding of those.

First note that the (non-unique) design matrices can be written in terms of Kronecker products as

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{0}_{b,k-1} & \boldsymbol{I}_b \\ \boldsymbol{I}_{k-1} \otimes \boldsymbol{1}_b & \boldsymbol{1}_{k-1} \otimes \boldsymbol{I}_b \end{bmatrix}; \quad \boldsymbol{X}_{Tr} = \boldsymbol{I}_k \otimes \boldsymbol{1}_b; \quad \boldsymbol{X}_{Bl} = \boldsymbol{1}_k \otimes \boldsymbol{I}_b; \quad \boldsymbol{X}_0 = \boldsymbol{1}_k \otimes \boldsymbol{1}_b$$

and

- a) Use the above to write the projection matrices H_0 , H_{Tr} and H_{Bl} in terms of Kronecker products.
- b) Using (9-277) it is staight forward to show that

$$(X^T X)^{-1} = C_1 + C_2 - C_3$$
(9-17)

with

$$C_{1} = \frac{1}{b} \begin{bmatrix} I + E_{k-1,k-1} & -E_{k-1,b} \\ -E_{b,k-1} & E_{bb} \end{bmatrix}; \quad C_{2} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_{k-1,b} \\ \mathbf{0}_{b,k-1} & \frac{1}{k}I \end{bmatrix};$$

$$C_{3} = \begin{bmatrix} \mathbf{0}_{k-1,k-1} & \mathbf{0}_{k-1,b} \\ \mathbf{0}_{b,k-1} & \frac{1}{bk}E_{bb} \end{bmatrix},$$
(9-18)

show that $XC_1X^T = H_{Tr}$, $XC_2X^T = H_{Bl}$, and $XC_3X^T = H_0$, and hence that $H = H_{Tr} + H_{Bl} - H_0$.

c) Use the above to conclude that $H - H_{Tr} = H_{Bl} - H_0$ and $H - H_{Bl} = H_{Tr} - H_0$.