
Chapter 3 1

Chapter 3

Probability and simulation
(solutions to exercises)

Chapter 3 CONTENTS 2

Contents

3 Probability and simulation
(solutions to exercises) 1
3.1 Concrete items . 4
3.2 Aluminum profile . 11
3.3 Concrete items (hypothesis testing) 14
3.4 Aluminum profile (hypothesis testing) 22
3.5 Transport times . 25
3.6 Cholesterol . 29
3.7 Pulse . 31
3.8 Foil production . 34
3.9 Course project . 36
3.10 Concrete items (sample size) . 39

Chapter 3 CONTENTS 3

Import Python packages

Import all needed python packages
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.stats.power as smp

Chapter 3 3.1 CONCRETE ITEMS 4

3.1 Concrete items

Exercise 3.1 Concrete items

A construction company receives concrete items for a construction. The length
of the items are assumed reasonably normally distributed. The following re-
quirements for the length of the elements are made

µ = 3000 mm.

The company samples 9 items from a delevery which are then measured for
control. The following measurements (in mm) are found:

3003 3005 2997 3006 2999 2998 3007 3005 3001

a) Compute the following three statistics: the sample mean, the sample stan-
dard deviation and the standard error of the mean, and what are the in-
terpretations of these statistics?

Solution

From the data we get the sample mean and sample standard deviation

x̄ = 3002.33mm and s = 3.708mm.

x = np.array([3003, 3005, 2997, 3006, 2999, 2998, 3007, 3005, 3001])
print(np.mean(x))

3002.3333333333335

print(np.std(x, ddof=1))

3.708099243547832

Chapter 3 3.1 CONCRETE ITEMS 5

From Definition 3.7, we get the standard error of the mean as

SEx̄ =
3.708√

9
= 1.236.

The interpretations of these are:

x̄ = 3002.33 The best estimate we can make of the true mean length of such concrete
items

s = 3.708 The population of concrete item lenghts has a standard deviation esti-
mated at 3.7. We estimate the average deviation from the mean for concrete
items to be 3.7 mm. So most concrete items will be within the range of approx-
imately ±7.4 mm of the mean

SEx̄ = 1.236 All of the following are versions of the same story given by this num-
ber:

• The standard deviation of the sampling distribution of the sample mean
(seen as a random variable) is (estimated at) 1.24

• And also: The standard deviation of the sampling distribution of the
difference between sample mean and the population mean (seen as a
random variable) is(estimated at) 1.24

• So from sample to sample (of size n = 9) the sample mean will be differ-
ent. And the size of these differences, that is, the difference between the
the sample mean and the true population mean is on average 1.24

• The sample mean is on average 1.24 away from the target: the population
mean

• The error we will make on average in using the sample mean for esti-
mating the population mean is 1.24

Remark 3.1

Please, think about the difference between the story told by s and the story told
by SEx̄ (both are estimated standard deviations, but for two VERY different con-
cepts).

b) In a construction process, 5 concrete items are joined together to a single
construction with a length which is then the complete length of the 5 con-
crete items. It is very important that the length of this new construction
is within 15 m plus/minus 1 cm. How often will it happen that such a

Chapter 3 3.1 CONCRETE ITEMS 6

construction will be more than 1 cm away from the 15 m target (assume
that the population mean concrete item length is µ = 3000 mm and that
the population standard deviation is σ = 3)?

Solution

Let Y denote the length of the joined construction. So

Y =
5

∑
i=1

Xi,

where Xi is the length of a randomly selected concrete item. So using the rules for
mean and variance calculations from Section 2.7, we can find that

E(Y) =
5

∑
i=1

E(Xi) =
5

∑
i=1

3000 = 5 · 3000 = 15000,

and

V(Y) =
5

∑
i=1

V(Xi) =
5

∑
i=1

32 = 5 · 9 = 45.

We can also state that, since the concrete item distribution is a normal

Xi ∼ N(µ, σ2), i = 1, . . . , 5,

then the sum of five (independent) of such will be normal (Theorem 2.40), so

Y ∼ N(15000, 45).

(Actually, the normality result is expressed in Theorem 3.3 for the sample mean,
however, the sum is just a simple scaling of the mean, so then the normality also
holds for the sum) So we can now find the answer to the question

P(|Y− 15000| > 10) = 2 · P((Y− 15000)√
45

> 10/
√

45) = 2 · P(Z > 1.4907) = 0.136.

print(2*(1-stats.norm.cdf(15010, loc=15000, scale=np.sqrt(45))))

0.1360371281141437

print(2*stats.norm.cdf(-1.4907))

0.13604027609838776

In between 13 and 14 cases out of 100 the joined construction is beyond 1 cm away
from the target – maybe a new supplier should be considered!

Chapter 3 3.1 CONCRETE ITEMS 7

c) Find the 95% confidence interval for the mean µ.

Solution

Since the 97.5%-quantile, t0.975 of the t-distribution with 8 degrees of freedom equals
t0.975 = 2.306 (found in Python as: stats.t.ppf(0.975, 8), we get

3002.33± 2.306 · 3.708√
9
⇔ [2999.5; 3005.2] .

Or everything in Python:

x = np.array([3003, 3005, 2997, 3006, 2999, 2998, 3007, 3005, 3001])
print(np.mean(x))

3002.3333333333335

print(np.std(x, ddof=1))

3.708099243547832

Quantile
print(stats.t.ppf(0.975, df=8))

2.306004135204166

Confidence interval directly
(CI_low,CI_high) = stats.ttest_1samp(x, popmean=0).confidence_interval()
print(CI_low,CI_high)

2999.483035936877 3005.18363072979

d) Find the 99% confidence interval for µ. Compare with the 95% one from
above and explain why it is smaller/larger!

Chapter 3 3.1 CONCRETE ITEMS 8

Solution

Since the 99.5%-quantile, t0.995 of the t-distribution with 8 degrees of freedom equals
t0.995 = 3.355 (found in Python as: stats.t.ppf(0.995,8), we get

3002.33± 3.335 · 3.708√
9
⇔ [2998.2; 3006.5] .

Or everything in Python:

print(stats.t.ppf(0.995,df=8))

3.3553873313333957

(CI_low,CI_high) = stats.ttest_1samp(x, popmean=0).confidence_interval(
confidence_level=0.99)

print(CI_low,CI_high)

2998.1859635916244 3006.4807030750426

It makes good sense that the 99% confidence interval becomes larger than the 95%
one, as the consequence of wanting to be more confident on capturing the true mean
µ will make us having to state a larger interval.

e) Find the 95% confidence intervals for the variance σ2 and the standard
deviation σ.

Solution

We use the formula for the variance confidence interval[
(n− 1)s2

χ2
1−α/2

;
(n− 1)s2

χ2
α/2

]
.

Chapter 3 3.1 CONCRETE ITEMS 9

where the quantiles come from a χ2-distribution with ν = n − 1 = 8 degrees of
freedom[

(n− 1)s2

χ2
1−α/2

;
(n− 1)s2

χ2
α/2

]
=

[
8 · 3.7082

χ2
0.975

;
8 · 3.7082

χ2
0.025

]
=

[
8 · 13.75
17.535

;
8 · 13.75

2.180

]
= [6.273; 50.465] .

And for the standard deviation:[√
6.273;

√
50.465

]
= [2.50; 7.10] .

In Python:

print(stats.chi2.ppf((0.975,0.025), df=8))

[17.535 2.180]

CI_var = 8*13.75/stats.chi2.ppf((0.975,0.025), df=8)
print(CI_var)

[6.273 50.465]

CI_std = np.sqrt(CI_var)
print(CI_std)

[2.505 7.104]

f) Find the 99% confidence intervals for the variance σ2 and the standard
deviation σ.

Solution

[
8 · 13.75
21.955

;
8 · 13.75

1.344

]
= [5.010; 81.820] .

Chapter 3 3.1 CONCRETE ITEMS 10

And for the standard deviation:[√
5.010;

√
81.820

]
= [2.24; 9.05] .

In Python:

print(stats.chi2.ppf((0.995,0.005), df=8))

[21.955 1.344]

CI_var = 8*13.75/stats.chi2.ppf((0.995,0.005), df=8)
print(CI_var)

[5.010 81.820]

CI_std = np.sqrt(CI_var)
print(CI_std)

[2.238 9.045]

Chapter 3 3.2 ALUMINUM PROFILE 11

3.2 Aluminum profile

Exercise 3.2 Aluminum profile

The length of an aluminum profile is checked by taking a sample of 16 items
whose length is measured. The measurement results from this sample are listed
below, all measurements are in mm:

180.02 180.00 180.01 179.97 179.92 180.05 179.94 180.10
180.24 180.12 180.13 180.22 179.96 180.10 179.96 180.06

From data is obtained: x̄ = 180.05 and s = 0.0959.

It can be assumed that the sample comes from a population which is normal
distributed.

a) A 90%-confidence interval for µ becomes?

Solution

Since the 95%-quantile, t0.95 of the t-distribution with 15 degrees of freedom equals
t0.95 = 1.753 (found in Python as stats.t.ppf(0.95,15)), we get

180.05± 1.753 · 0.0959√
16

= [180.00, 180.10] .

Or everything in Python:

Chapter 3 3.2 ALUMINUM PROFILE 12

x = np.array([180.02, 180.00, 180.01, 179.97, 179.92, 180.05, 179.94, 180.10,
180.24, 180.12, 180.13, 180.22, 179.96, 180.10, 179.96, 180.06])
print(np.mean(x))

180.05

print(np.std(x, ddof=1))

0.09591663046625545

print(stats.t.ppf(0.95,df = 15))

1.7530503556925547

(CI_low,CI_high) = stats.ttest_1samp(x, popmean=180).confidence_interval(
confidence_level=0.9)

print(CI_low,CI_high)

180.0079633292111 180.09203667078893

b) A 99%-confidence interval for σ becomes?

Solution

We use the formula for the variance confidence interval[
(n− 1)s2

χ2
1−α/2

;
(n− 1)s2

χ2
α/2

]
,

where the quantiles come from a χ2-distribution with ν = n − 1 = 15 degrees of
freedom[

(n− 1)s2

χ2
1−α/2

;
(n− 1)s2

χ2
α/2

]
=

[
15 · 0.0092

χ2
0.995

;
15 · 0.0092

χ2
0.005

]
=

[
15 · 0.0092

32.801
;

15 · 0.0092
4.601

]
= [0.00421; 0.02999] .

Chapter 3 3.2 ALUMINUM PROFILE 13

And for the standard deviation:[√
0.00421;

√
0.02999

]
= [0.065; 0.173] .

In Python:

print(stats.chi2.ppf((0.995,0.005),df=15))

[32.801 4.601]

CI_var = 15*0.0092/stats.chi2.ppf((0.995,0.005),df=15)
print(CI_var)

[0.004 0.030]

CI_std = np.sqrt(CI_var)
print(CI_std)

[0.065 0.173]

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 14

3.3 Concrete items (hypothesis testing)

Exercise 3.3 Concrete items (hypothesis testing)

This is a continuation of Exercise 1, so the same setting and data is used (read
the initial text of it).

a) To investigate whether the requirement to the mean is fulfilled (with α =
5%), the following hypothesis should be tested

H0 : µ = 3000
H1 : µ 6= 3000.

Or similarly asked: what is the evidence against the null hypothesis?

Solution

This is a one-sample situation. In Python it could be handled by:

x = np.array([3003,3005,2997,3006,2999,2998,3007,3005,3001])
t_obs, p_val = stats.ttest_1samp(x,popmean=3000)
print(t_obs)

1.8877596148972005

print(p_val)

0.09575551807233935

from which the answer can be seen. One could also explicitly do it as

tobs =
3002.333− 3000

3.708/
√

9
= 1.885.

And then find the p-value as (using a t-distribution with ν = 8 degrees of freedom)

2 ∗ P(T > 1.885) = 0.096.

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 15

(in Python as: 2*(1-stats.t.cdf(1.885,df=8))). So although there is a weak evi-
dence aginst the null, cf. the p-value interpretation table in Section 3.1, when using
an α of 0.05 the null hypothesis is not rejected, but must be accepted.

b) What would the level α = 0.01 critical values be for this test, and what are
the interpretation of these?

Solution

The critical values would be ±t0.995 = ±3.355:

print(stats.t.ppf(0.995, df=8))

3.3553873313333957

This means that, in a new experiment, the standardized difference between the data
and the null hypothesis, also called tobs, must be either larger than 3.355 or smaller
than −3.355 to lead to a significant result of the experiment.

c) What would the level α = 0.05 critical values be for this test (compare also
with the values found in the previous question)?

Solution

The critical values would be ±t0.975 = ±2.306:

print(stats.t.ppf(0.975, df=8))

2.306004135204166

This means that, again in a new experiment, it is easier to detect an effect with sig-
nificance level α = 0.05 than on level α = 0.01.

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 16

d) Investigate, by some plots, whether the data here appears to be coming
from a normal distribution (as assumed until now)?

Solution

x = np.array([3003,3005,2997,3006,2999,2998,3007,3005,3001])
plt.hist(x, edgecolor=’black’, density=True)
add normal curve
xlim = plt.xlim(2996, 3008)
x_plot = np.linspace(2996, 3008, 100)
y = stats.norm.pdf(x_plot, np.mean(x), np.std(x,ddof=1))
plt.plot(x_plot,y, color=’red’)
plt.title("Histogram of x")
plt.show()

2996 2998 3000 3002 3004 3006 3008
0.00

0.05

0.10

0.15

0.20

Histogram of x

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 17

Solution

x_plot = np.linspace(0.9*min(x), 1.1*max(x), 100)
y = stats.norm.cdf(x_plot, np.mean(x), np.std(x, ddof=1))
plt.ecdf(x)
plt.plot(x_plot, y, color=’red’, label=’Normal CDF’)
plt.legend()
xlim = plt.xlim(2996, 3008)
plt.show()

2996 2998 3000 3002 3004 3006 3008
0.0

0.2

0.4

0.6

0.8

1.0
Normal CDF

Solution

sm.qqplot(x, line =’q’)
plt.show()

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 18

1.0 0.5 0.0 0.5 1.0
Theoretical Quantiles

2996

2998

3000

3002

3004

3006

3008

Sa
m

pl
e

Qu
an

til
es

Solution

Compare with 9 simulated ones

W = stats.randint.rvs(0,3,size=2)
Generate 9 plots with QQ-plots from the assumed distribution
n = len(x)
fig, axs = plt.subplots(3,3)
for ax in axs.flat:

sm.qqplot(stats.norm.rvs(size=n),line="q",ax=ax)
ylim = ax.set(ylim=[-3,3])

Clear the randomly selected plot and replace with the plot from data
axs[W[0],W[1]].clear()
sm.qqplot((x-x.mean())/x.std(ddof=1),line="q",ax=axs[W[0],W[1]]) # Standardized
ylim = axs[W[0],W[1]].set(ylim=[-3,3])
temp = plt.setp(axs[W[0],W[1]].spines.values(), color="red")
Generate plot
plt.tight_layout()
plt.show()

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 19

1 0 1
Theoretical Quantiles

2

0

2
Sa

m
pl

e
Qu

an
til

es

1 0 1
Theoretical Quantiles

2

0

2

Sa
m

pl
e

Qu
an

til
es

1 0 1
Theoretical Quantiles

2

0

2

Sa
m

pl
e

Qu
an

til
es

1 0 1
Theoretical Quantiles

2

0

2

Sa
m

pl
e

Qu
an

til
es

1 0 1
Theoretical Quantiles

2

0

2
Sa

m
pl

e
Qu

an
til

es

1 0 1
Theoretical Quantiles

2

0

2

Sa
m

pl
e

Qu
an

til
es

1 0 1
Theoretical Quantiles

2

0

2

Sa
m

pl
e

Qu
an

til
es

1 0 1
Theoretical Quantiles

2

0

2

Sa
m

pl
e

Qu
an

til
es

1 0 1
Theoretical Quantiles

2

0

2
Sa

m
pl

e
Qu

an
til

es

Solution

The nine data points do not differ more from the line than what truly normally
distributed samples of size n = 9 do, so we cannot falsify the normality assumption
(Did we prove normality?...no, we accept that they are normal distributed (like when
we accept the null hypothesis)).

e) Assuming that you, maybe among different plots, also did the normal q-q
plot above, the question is now: What exactly is plotted in that plot? Or
more specifically: what are the x- and y-coordinates of e.g. the two points
to the lower left in this plot?

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 20

Solution

Let us look at the Normal q-q plot again:

sm.qqplot(x, line =’q’)
plt.show()

1.0 0.5 0.0 0.5 1.0
Theoretical Quantiles

2996

2998

3000

3002

3004

3006

3008

Sa
m

pl
e

Qu
an

til
es

The y-coordinates of the nine points from left to right in the plot are the ordered
observations x(1), . . . , x(9):

print(np.sort(x))

[2997 2998 2999 3001 3003 3005 3005 3006 3007]

Solution

The x-coordinates are quantiles from the standard normal distribution. Method 3.42
tell us exactly which quantiles, that are used by Python (in the current case there is
less than n = 10 observations):

pi =
i− 3/8
9 + 1/4

, i = 1, . . . , 9

Chapter 3 3.3 CONCRETE ITEMS (HYPOTHESIS TESTING) 21

i = np.arange(1,10)
pi = (i - 3/8)/(9+1/4)
print(stats.norm.ppf(pi))

[-1.494 -0.932 -0.572 -0.274 0.000 0.274 0.572 0.932 1.494]

plt.plot(stats.norm.ppf(pi), np.sort(x), ’o’)
plt.show()

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2998

3000

3002

3004

3006

Chapter 3 3.4 ALUMINUM PROFILE (HYPOTHESIS TESTING) 22

3.4 Aluminum profile (hypothesis testing)

Exercise 3.4 Aluminium profile (hypothesis testing)

We use the same setting and data as in Exercise 2, so read the initial text of it.

a) Find the evidence against the following hypothesis:

H0 : µ = 180.

Solution

First we compute the observed t-statistic

tobs =
180.05− 180
0.0959/

√
16

= 2.085,

and the p-value is

p-value = 2 · P(T > 2.085) = 2 · 0.0273 = 0.055.

print(2*(1-stats.t.cdf(2.085,df=15)))

0.054572192829367205

Or in completely solve by Python:

x = np.array([180.02, 180.00, 180.01, 179.97, 179.92, 180.05, 179.94, 180.10,
180.24, 180.12, 180.13, 180.22, 179.96, 180.10, 179.96, 180.06])
t_obs,p_val = stats.ttest_1samp(x,popmean=180)
print(t_obs,p_val)

2.085144140571199 0.05455742828541606

Hence there is weak evidence against H0, cf. Table 3.1.

Chapter 3 3.4 ALUMINUM PROFILE (HYPOTHESIS TESTING) 23

b) If the following hypothesis test is carried out

H0 : µ = 180,
H1 : µ 6= 180.

What are the level α = 1% critical values for this test?

Solution

The critical values are the 0.005 and 0.995 quantiles of the t-distribution with ν =

n− 1 = 15 degrees of freedom, ±t0.995 = ±2.947:

print(stats.t.ppf(0.995, df=15))

2.9467128834859504

c) What is the 99%-confidence interval for µ?

Solution

The formula gives

180.05± t0.995
0.0959√

16
= [179.98; 180.12].

(CI_low,CI_high) = stats.ttest_1samp(x, popmean=180).confidence_interval(
confidence_level=0.99)

print(CI_low,CI_high)

179.97934030731614 180.1206596926839

Chapter 3 3.4 ALUMINUM PROFILE (HYPOTHESIS TESTING) 24

d) Carry out the following hypothesis test

H0 : µ = 180,
H1 : µ 6= 180,

using α = 5%.

Solution

We already found the p-value = 0.055 above, and as this is larger than α we cannot
reject the null hypothesis of µ = 180.

Chapter 3 3.5 TRANSPORT TIMES 25

3.5 Transport times

Exercise 3.5 Transport times

A company, MM, selling items online wants to compare the transport times for
two transport firms for delivery of the goods. To compare the two companies
recordings of delivery times on a specific route were made, with a sample size
of n = 9 for each firm. The following data were found:

Firm A: ȳA = 1.93 d and sA = 0.45 d,
Firm B: ȳB = 1.49 d and sB = 0.58 d.

note that d is the SI unit for days. It is assumed that data can be regarded as
stemming from normal distributions.

a) We want to test the following hypothesis

H0 : µA = µB
H1 : µA 6= µB

What is the p-value, interpretation and conclusion for this test (at α = 5%
level)?

Solution

This is the independent samples (non-directional) t-test (Welch) in Method 3.49 (or
Method 3.51). We first find the t-test statistic

tobs =
1.93− 1.49√

0.452/9 + 0.582/9
= 1.8,

and then the degrees of freedom

ν =

(
0.452

9 + 0.582

9

)2

(0.452/9)2

8 + (0.582/9)2

8

= 15.0,

and the p-value is then found to

2 · P(T > 1.8) = 0.0922,

using a t-distribution with 15.0 degrees of freedom. So even though, according to
Table 3.1, there is weak evidence against the null hypothesis, when we use α = 0.05
we cannot reject the null hypothesis of the two firms being equally fast. In Python it
can be found as

Chapter 3 3.5 TRANSPORT TIMES 26

ms = np.array([1.93,1.49])
vs = np.array([0.45**2, 0.58**2])
ns = np.array([9,9])
t_obs = (ms[0]-ms[1])/np.sqrt(vs[0]/ns[0]+vs[1]/ns[1])
nu = sum(vs / ns)**2 / sum((vs / ns)**2 / (ns - 1))
print(t_obs)

1.7981248351046575

print(nu)

15.069646790733499

print(2*(1-stats.t.cdf(t_obs,df=nu)))

0.09221726347624926

b) Find the 95% confidence interval for the mean difference µA − µB.

Solution

We need the degrees of freedom - we found that number above: ν = 15.0. Since the
relevant t-quantile then is, using ν = 15.0,

print(stats.t.ppf(0.975,df=15.0))

2.131449545559323

t0.975 = 2.131,

Chapter 3 3.5 TRANSPORT TIMES 27

the confidence interval becomes

1.93− 1.49± 2.131
√

0.452/9 + 0.582/9.

Which becomes

CI = 1.93-1.49 + np.array([-1,1])*stats.t.ppf(0.975,df=15.0)*np.sqrt(
0.45**2/9+0.58**2/9)

print(CI)

[-0.082 0.962]

Hence the answer is: [−0.082; 0.962].

c) What is the power of a study with n = 9 observations in each of the two
samples of detecting a potential mean difference of 0.4 between the firms
(assume that σ = 0.5 and that we use α = 0.05)?

Solution

n = 9
delta = 0.4
sd = 0.5
alpha = 0.05
print(smp.TTestIndPower().solve_power(nobs1=n, effect_size = delta/sd, alpha=alpha))

0.35794895150011175

So the power is only 0.36 - not nearly good enough for a reasonable study.

d) What effect size (mean difference) could be detected with n = 9 observa-
tions in each of the two samples with a power of 0.8 (assume that σ = 0.5
and that we use α = 0.05)?

Chapter 3 3.5 TRANSPORT TIMES 28

Solution

n = 9
power = 0.8
sd = 0.5
alpha = 0.05
effect = smp.TTestIndPower().solve_power(nobs1=n, alpha=alpha, power=power)
delta = effect*sd
print(delta)

0.7034623345972915

So a potential mean difference of 0.70 is detectable with probability 0.8 by such a
study.

e) How large a sample size (from each firm) would be needed in a new inves-
tigation, if we want to detect a potential mean difference of 0.4 between the
firms with probability 0.90, that is with power=0.90 (assume that σ = 0.5
and that we use α = 0.05)?

Solution

power = 0.9
sd = 0.5
delta = 0.4
alpha = 0.05
print(smp.TTestIndPower().solve_power(effect_size=delta/sd, alpha=alpha, power=power))

33.82554384917234

So n = 34 in each sample would do the job!

Chapter 3 3.6 CHOLESTEROL 29

3.6 Cholesterol

Exercise 3.6 Cholesterol

In a clinical trial of a cholesterol-lowering agent, 15 patients’ cholesterol (in
mmol/L) has been measured before treatment and 3 weeks after starting treat-
ment. Data are listed in the following table:

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Before 9.1 8.0 7.7 10.0 9.6 7.9 9.0 7.1 8.3 9.6 8.2 9.2 7.3 8.5 9.5
After 8.2 6.4 6.6 8.5 8.0 5.8 7.8 7.2 6.7 9.8 7.1 7.7 6.0 6.6 8.4

The following is run in Python:

x1 = np.array([9.1, 8.0, 7.7, 10.0, 9.6, 7.9, 9.0, 7.1,
8.3, 9.6, 8.2, 9.2, 7.3, 8.5, 9.5])

x2 = np.array([8.2, 6.4, 6.6, 8.5, 8.0, 5.8, 7.8, 7.2,
6.7, 9.8, 7.1, 7.7, 6.0, 6.6, 8.4])

Independent
t_obs,p_val = stats.ttest_ind(x1,x2,equal_var=False)
print(t_obs, p_val)

3.3206371615181602 0.0025776851099507973

Paired
t_obs,p_val = stats.ttest_rel(x1,x2)
print(t_obs,p_val)

7.340653674886342 3.6722518645935146e-06

a) Can there, based on these data be demonstrated a significant decrease in
cholesterol levels with α = 0.001?

Chapter 3 3.6 CHOLESTEROL 30

Solution

This is clearly a paired setting so only the results from the last of the Python-calls are
relevant, where we can read off the results:

The (non-directional) p-value is 0.00000367, so there is very strong evidence against
the null hypothesis, and we can beyond any reasonable doubts conclude that the
mean cholesterol level has decreased after the 3 weeks.

Chapter 3 3.7 PULSE 31

3.7 Pulse

Exercise 3.7 Pulse

13 runners had their pulse measured at the end of a workout and 1 minute after
again and we got the following pulse measurements:

Runner 1 2 3 4 5 6 7 8 9 10 11 12 13
Pulse end 173 175 174 183 181 180 170 182 188 178 181 183 185
Pulse 1min 120 115 122 123 125 140 108 133 134 121 130 126 128

The following was run in Python:

Pulse_end = np.array([173,175,174,183,181,180,170,
182,188,178,181,183,185])

Pulse_1min = np.array([120,115,122,123,125,140,108,
133,134,121,130,126,128])

print(np.mean(Pulse_end))

179.46153846153845

print(np.mean(Pulse_1min))

125.0

print(np.std(Pulse_end, ddof=1))

5.189980485117207

print(np.std(Pulse_1min, ddof=1))

8.406346808612328

print(np.std(Pulse_end-Pulse_1min, ddof=1))

5.767948575466911

Chapter 3 3.7 PULSE 32

a) What is the 99% confidence interval for the mean pulse drop (meaning the
drop during 1 minute from end of workout)?

Solution

We use the paired sample t-test version of the confidence interval (see Section 3.2.3)
with sdif = 5.768, n = 13 and 12 degrees of freedom for the t-quantile t0.005:

print(stats.t.ppf(0.995, df=12))

3.0545395893929017

Or in completely in Python:

res = stats.ttest_rel(Pulse_end,Pulse_1min)
print(res.statistic, res.pvalue)

34.043970207871624 2.624171406710289e-13

Confidence interval
(CI_low,CI_high) = res.confidence_interval(confidence_level=0.99)
print(CI_low,CI_high)

49.575065928685966 59.348010994390954

So, the answer is:

54.46± 3.054 · 5.768√
13

= [49.58; 59.35].

b) Consider now the 13 pulse end measurements (first row in the table).
What is the 95% confidence interval for the standard deviation of these?

Chapter 3 3.7 PULSE 33

Solution

Using 3.19 we find the 95% confidence interval for the variance to

12 · 5.189982

χ2
0.975

< σ2 <
12 · 5.189982

χ2
0.025

,

which then for the standard deviation becomes√
12 · 5.189982

23.34
< σ <

√
12 · 5.189982

4.40
.

Or in Python:

ttest = stats.ttest_rel(Pulse_end,Pulse_1min)
print(ttest.statistic, ttest.pvalue)

34.043970207871624 2.624171406710289e-13

CI_var = (12 * np.var(Pulse_end,ddof=1)) / stats.chi2.ppf((0.975,0.025), df=12)
CI_std = np.sqrt(CI_var)
print(CI_var)

[13.851 73.398]

print(CI_std)

[3.722 8.567]

So, the answer is that we accept that σ ∈ [3.72; 8.57] or we could write 3.72 < σ <

8.57.

Chapter 3 3.8 FOIL PRODUCTION 34

3.8 Foil production

Exercise 3.8 Foil production

In the production of a certain foil (film), the foil is controlled by measuring the
thickness of the foil in a number of points distributed over the width of the foil.
The production is considered stable if the mean of the difference between the
maximum and minimum measurements does not exceed 0.35 mm. At a given
day, the following random samples are observed for 10 foils:

Foil 1 2 3 4 5 6 7 8 9 10
Max. in mm (ymax) 2.62 2.71 2.18 2.25 2.72 2.34 2.63 1.86 2.84 2.93
Min. in mm (ymin) 2.14 2.39 1.86 1.92 2.33 2.00 2.25 1.50 2.27 2.37
Max-Min (D) 0.48 0.32 0.32 0.33 0.39 0.34 0.38 0.36 0.57 0.56

The following statistics may potentially be used

ȳmax = 2.508, ȳmin = 2.103, symax = 0.3373, symin = 0.2834, sD = 0.09664.

a) What is a 95% confidence interval for the mean difference?

Solution

The 95% confidence interval is given by:

CI = (2.508 - 2.103) + np.array([-1, 1]) * stats.t.ppf(0.975, df=10-1) * 0.09664 / np.sqrt(10)
print(CI)

[0.336 0.474]

The confidence interval contains those values of the mean difference that we believe
in based on the data. Notice that the CI contains µD = 0.35, hence we know that we
will not reject the null hypothesis H0 = 0.35, which is the next question.

b) How much evidence is there that the mean difference is different from
0.35? State the null hypothesis, t-statistic and p-value for this question.

Chapter 3 3.8 FOIL PRODUCTION 35

Solution

The t-statistic is found using Method 9:

tobs =
(2.508− 2.103)− 0.35

0.09664/
√

10
= 1.80.

t_obs = ((2.508 - 2.103) - 0.35) / (0.09664 / np.sqrt(10))
print(t_obs)

1.7997234200047632

The p-value for this assessment is

p-value = 2 · P(T > tobs) = 0.1054.

where T has a t-distribution with 9 degrees of freedom:

print(2 * (1-stats.t.cdf(t_obs,df=10-1)))

0.10543681559704599

According to Table 3.1 there is little or no evidence that against the null hypothesis
that µD = 0.35.

Chapter 3 3.9 COURSE PROJECT 36

3.9 Course project

Exercise 3.9 Course project

At a specific education it was decided to introduce a project, running through
the course period, as a part of the grade point evaluation. In order to assess
whether it has changed the percentage of students passing the course, the fol-
lowing data was collected:

Before introduction After introduction
of project of project

Number of students evaluated 50 24
Number of students failed 13 3
Average grade point x̄ 6.420 7.375
Sample standard deviation s 2.205 1.813

a) As it is assumed that the grades are approximately normally distributed
in each group, the following hypothesis is tested:

H0 : µBefore = µAfter,
H1 : µBefore 6= µAfter.

The test statistic, the p-value and the conclusion for this test become?

Solution

The (Welch) t-test statistic for this setup is found using Method :

t =
6.42− 7.375√

2.2052/50 + 1.8132/24
= −1.97.

From the t-distribution with ν = 54.4 we can find that the (non-directional) p-value
is

2 · P(T > 1.97) = 0.054.

print(2*(1-stats.t.cdf(1.97,54.4)))

0.05393786409352663

Chapter 3 3.9 COURSE PROJECT 37

In Python we could do it by the following:

ms = np.array([6.42,7.375])
vs = np.array([2.205**2, 1.813**2])
ns = np.array([50,24])
t_obs = (ms[0]-ms[1])/np.sqrt(vs[0]/ns[0]+vs[1]/ns[1])
nu = sum(vs / ns)**2 / sum((vs / ns)**2 / (ns - 1))
print(t_obs)

-1.9733867395024223

print(nu)

54.38590559936726

On a 5% level we cannot conclude a significant difference in the grade point means
before and after.

b) A 99% confidence interval for the mean grade point difference is?

Solution

We need the degrees of freedom - we found that number above: ν = 54.4. Since the
relevant t-quantile then is, using ν = 54.4,

print(stats.t.ppf(0.995,54.4))

2.669269209086161

Hence t0.995 = 2.669, and the confidence interval becomes

6.42− 7.375± 2.669
√

2.2052/50 + 1.8132/24,

Which is:

Chapter 3 3.9 COURSE PROJECT 38

CI = (6.42-7.375) + np.array([-1,1])*stats.t.ppf(0.995,df=54.4)*np.sqrt(
2.205**2/50 + 1.813**2/24)

print(CI)

[-2.247 0.337]

and the answer is: we accept that the mean difference in the interval [-2.247; 0.337].

c) A 95% confidence interval for the grade point standard deviation after the
introduction of the project becomes?

Solution

The confidence interval formula for a sample variance is used WITH the square-root
applied to everything: √

(n− 1) · s2√
χ2

0.975

< σ <

√
(n− 1) · s2√

χ2
0.025

,

so
√

23 · 1.8132
√

38.076
< σAfter <

√
23 · 1.8132
√

11.689
.

The values found in Python:

CI_std = np.sqrt((23*1.813**2)/stats.chi2.ppf((0.975,0.025),23))
print(CI_std)

[1.409 2.543]

So the answer is, that we accept that σAfter ∈ [1.41; 2.54].

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 39

3.10 Concrete items (sample size)

Exercise 3.10 Concrete items (sample size)

This is a continuation of Exercise 1, so the same setting and data is used (read
the initial text of it).

a) A study is planned of a new supplier. It is expected that the standard
deviation will be approximately 3, that is, σ = 3 mm. We want a 90%
confidence interval for the mean value in this new study to have a width
of 2 mm. How many items should be sampled to achieve this?

Solution

We use the sample size formula (Method 3.63) with wanted margin of error ME = 1
(as the width of the confidence interval is twice the margin of error)

n =
(z0.95σ

ME

)2
=

(
1.645 · 3

1

)2

= 24.35.

(in Python: stats.norm.ppf(0.95) to get z0.95 = 1.645). Hence the answer becomes:
at least 25.

b) Answer the sample size question above but requiring the 99% confidence
interval to have the (same) width of 2 mm.

Solution

The same formula as above:

n =
(z0.995σ

ME

)2
=

(
2.576 · 3

1

)2

= 59.72.

(using Python: stats.norm.ppf(0.995) to get z0.995 = 2.576). Hence the answer
becomes: at least 60.

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 40

c) (Warning: This is a difficult question about a challenging abstraction - do
not worry, if you do not make this one) For the two sample sizes found
in the two previous questions find the probability that the correspond-
ing confidence interval in the future study will actually be more than 10%
wider than planned for (still assuming and using that the population vari-
ance is σ2 = 9).

Solution

The random width of the confidence interval is due to the randomly changing sam-
ple variance in the formula for the (random) half width of the interval

’The half width of CI’ = t1−α/2
S√
n

.

The (sampling) distribution of the variance estimator, S, is a χ2-distribution, as
stated in Section 3.1.6 (around Equation (3-17)). Thus: let S2 be the variance of a
sample of size n from a normal distribution with variance σ2 = 32 = 9. Then

χ2 =
(n− 1) · S2

9
,

is a stochastic variable following the χ2-distribution with v = n− 1 degrees of free-
dom.

Solution

So, as the wanted margin error was ME = 1, we are asked to first find with α = 0.10
and n = 25, and hence t0.95 = 1.711 (in Python stats.t.ppf(0.95, df=24))

P (’Half width of CI’ > 1.1) = P
(

t0.95 ·
S√
n
> 1.1

)
= P

(
t2
0.95 ·

S2

n
> 1.12

)
= P

(
t2
0.95 ·

9 · χ2

24 · 25
> 1.12

)
= P

(
χ2 >

1.12 · 24 · 25
t2
0.95 · 9

)
= P

(
χ2 > 27.56

)
= 0.28.

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 41

print(stats.t.ppf(0.95, df=24))

1.7108820799094275

print(1.1**2*25*24/(stats.t.ppf(0.95, df=24)**2*9))

27.55839726451134

print(1-stats.chi2.cdf(1.1**2*25*24/(stats.t.ppf(0.95, df=24)**2*9), 24))

0.27910525870084113

Therefore in almost 30% of cases an experiment planned for a 90%ME = 1 would
actually end up wih a confidence interval of half width more than 1.1.

For the 99% case, and n = 60 the same computation gives:

print(stats.t.ppf(0.995, df=59))

2.661758752162967

print(1.1**2*60*59/(stats.t.ppf(0.995, df=59)**2*9))

67.17516493075934

print(1-stats.chi2.cdf(1.1**2*60*59/(stats.t.ppf(0.995, df=59)**2*9), 59))

0.21736212897439755

So in this case it only happens in 22% of the cases. In the next part of this topic we
will learn how we can plan experiments such that we are more in control of the risk
of the experiments not really meeting our needs.

d) Now a new experiment is to be planned. In the first part above, given
some wanted margin of error (ME) a sample size of n = 25 was found.

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 42

What are each of the probabilities that an experiment with n = 25 will de-
tect effects corresponding to (”end up significant for”) µ1 = 3001, 3002, 3003
respectively? Assume that we use the typical α = 0.05 level and that
σ = 3?

Solution

We can only solve this by the in-built smp.TTestPower().solve_power() function in
Python. If we specify everything but the power - it will compute the power for us.
With e.g. µ1 = 3001, we have that µ0 − µ1 = −1, so in the Python-function the delta
should be set to either 1 or −1. And in fact one can insert a list of the three relevant
deltas to get the three answers by a single call to Python: (But remember that the
Python-function takes the effect size, which corresponds to delta

σ)

n = 25
delta = np.array([1,2,3])
sd = 3
alpha = 0.05
print(smp.TTestPower().solve_power(nobs=n, effect_size = delta/sd, alpha=alpha))

[0.360 0.892 0.998]

So the three probabilities are 0.36, 0.89 and 0.998. A difference of 1 would not be
reasonably detectable by this experiment but a difference of 2 has a high probability
of being detected and even more so for 3.

Solution

A plot of all possible powers for all possible effect sizes could now easily be made:

deltas = np.linspace(0,3,100)
powers25 = smp.TTestPower().power(effect_size=deltas/sd, nobs=n, alpha=alpha)
plt.plot(deltas,powers25)
plt.xlabel("Deltas")
plt.ylabel("Power")
plt.show()

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 43

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Deltas

0.2

0.4

0.6

0.8

1.0

Po
we

r

e) One of the sample size computation above led to n = 60 (it is not so im-
portant how/why). Answer the same question as above using n = 60.

Solution

print(smp.TTestPower().solve_power(nobs=60, effect_size = np.array([1,2,3])/3, alpha=0.05))

[0.719 0.999 1.000]

So the three probabilities are 0.72, 0.999 and 1.00000. A difference of 1 would still not
be reasonably detectable by this experiment but a difference of 2 and 3 has extremely
high power.

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 44

Solution

A plot of all possible powers for all possible effect sizes could now easily be made:

deltas = np.linspace(0,3,100)
powers60 = smp.TTestPower().power(effect_size=deltas/3, nobs=60, alpha=0.05)
plt.plot(deltas,powers60, label="n=60")
plt.plot(deltas,powers25, label="n=25")
plt.xlabel("Deltas")
plt.ylabel("Power")
plt.legend()
plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Deltas

0.2

0.4

0.6

0.8

1.0

Po
we

r

n=60
n=25

f) What sample size would be needed to achieve a power of 0.80 for an effect
of size 0.5?

Solution

The approximate sample size formula, Method 3.47, is only formally given for one-
sided tests, so at first sight again we have no formulas for this (as we test two-
sided here). However, in fact the formula also works nicely for the two-sided case,

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 45

substituting z1−α by z1−α/2, as the only error that is made would be the left hand
tail of the rejection area, cf. the power plots on page 46, which essentially is zero for
relevant effect sizes. So IF we use this adapted (and no-where stated) formula we
would get:

n =

(
3 · z0.8 + z0.975

0.5

)2

= 282.6.

n = (3*(stats.norm.ppf(0.8)+stats.norm.ppf(0.975))/0.5)**2
print(n)

282.55967043656716

However, it would actually be (slightly) better to simply use the Python-function
again as the Python-function does not rely on any normal approximation of the more
correct t-distributions:

n = smp.TTestPower().solve_power(effect_size=0.5/3, alpha=0.05, power=0.8)
print(n)

284.4856868534297

This would lead to n = 285. So 0.5 is an effect size that it would be pretty expensive
to be able to detect.

g) Assume that you only have the finances to do an experiment with n = 50.
How large a difference would you be able to detect with probability 0.8
(i.e. Power= 0.80)?

Solution

effect = smp.TTestPower().solve_power(nobs=50, alpha=0.05, power=0.8)
sd = 3
delta = effect*sd
print(delta)

1.2125490163435668

Chapter 3 3.10 CONCRETE ITEMS (SAMPLE SIZE) 46

The answer is 1.21, so a true alternative mean of 2998.8 (or smaller) or 3001.2 (or
larger) would be detected by this experiment with probability 0.80

	3 Probability and simulation(solutions to exercises)
	3.1 Concrete items
	3.2 Aluminum profile
	3.3 Concrete items (hypothesis testing)
	3.4 Aluminum profile (hypothesis testing)
	3.5 Transport times
	3.6 Cholesterol
	3.7 Pulse
	3.8 Foil production
	3.9 Course project
	3.10 Concrete items (sample size)

