02403 Introduction to Mathematical Statistics

Lecture 3: Non-linear functions and the Multivariate normal distribution

DTU Compute Technical University of Denmark 2800 Lyngby – Denmark

Non-linear function of random variables

The multivariate normal distribution

Sunctions of Normal random variables

- Normal distribution as a sample distribution
- The χ^2 -distribution

Overview

Non-linear function of random variables

2 The multivariate normal distribution

3 Functions of Normal random variables

• Normal distribution as a sample distribution • The χ^2 -distribution

Distribution by simulation

Assume that that we want to assess the distribution (or some properties) the random variable \boldsymbol{Y}

$$Y = f(V_1, \dots, V_m)$$

where $V_1, ..., V_m$ follow some specified dsitributions, and f is some (non-linear) function. The distribution of Y can be assessed by

- Simulate realizations k (k >> 1) of $V_1, ..., V_m$, we now have $v_{1,1}, ..., v_{m,1}, v_{1,2}, ..., v_{m,k}$
- Calculate $y_i = f(v_{1,i},...,v_{m,i})$ for $i \in \{1,...,k\}$
- Calculate any summary statisics $\hat{\mu}_{y}, s_{y}, ...$, and so on, based on the realzations, or study the distribution from the histogram of the realizations

Example¹

A simple predator-prey model is the Lotka-Volterra model

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y,$$

where x is the size of the prey population and y is size of the predator population. The equation allows for a constant of motion (i.e. the quantity will stay constant through time for given initial conditions) given by

$$K = y^{\alpha} e^{-\beta y} x^{\gamma} e^{-\delta x}.$$

Assume that $\alpha = 2/3$, $\beta = 4/3$, $\gamma = \delta = 1$, and that

$$X \sim N(1, 1/8^2)$$

 $Y \sim N(1/2, 1/16^2)$

further assume that X and Y are independent. Find (approximate)

- The mean, variance and standard deviation of K
- Sketch the distribution of *K*

¹2024 June

(DTU Compute)

Error propagation

Assume that Y_i are random variables with $E(Y_i) = \mu_i$ og $V(Y_i) = \sigma_i^2$ og $Cov(Y_i, Y_j) = \sigma_{ij}$

We need to find:

$$\sigma_{f(Y_1,\ldots,Y_n)}^2 = \mathsf{Var}(f(Y_1,\ldots,Y_n))$$

(Generalization of) Method 4.3: for non-linaer functions:

$$\sigma_{f(Y_1,\ldots,Y_n)}^2 \approx \sum_{i=1}^n \left(\frac{\partial f}{\partial y_i}\right)^2 \sigma_i^2 + 2\sum_i \sum_{j>i} \frac{\partial f}{\partial y_i} \frac{\partial f}{\partial y_j} \sigma_{ij}$$

Where the derivatives of f are evaluated at $\mu_1, ..., \mu_n$. Notice that if $Y_1, ..., Y_n$ are independent then (Method 4.3)

$$\sigma_{f(Y_1,\ldots,Y_n)}^2 \approx \sum_{i=1}^n \left(\frac{\partial f}{\partial y_i}\right)^2 \sigma_i^2$$

Error propagation by Taylor expansion

Let $f(Y_1,...,Y_n)$ be a non-linear function of the random variables $Y_1,...,Y_n$. We make a first order Taylor expansion around $\mu = [E(Y_1),...,E(Y_n)]^T$

$$f(y_1, \dots, y_n) = f(\mu) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \bigg|_{\mathbf{y} = \mu} (y_i - \mu_i) + HOT$$
$$\approx f(\mu) + \sum_{i=1}^n \frac{\partial f}{\partial y_i} \bigg|_{\mathbf{y} = \mu} (y_i - \mu_i).$$

Hence we have

$$f(Y_1,\ldots,Y_n)\approx f(\mu)+\sum_{i=1}^n \frac{\partial f}{\partial y_i}\Big|_{\mathbf{y}=\mu}(Y_i-\mu_i).$$

Error propagation by Taylor expansion - Cont.

Find the expectation

$$E[f(Y_1,\ldots,Y_n)] \approx E[f(\boldsymbol{\mu})] + \sum_{i=1}^n \frac{\partial f}{\partial y_i} \bigg|_{\mathbf{y}=\boldsymbol{\mu}} E[Y_i - \boldsymbol{\mu}_i]$$

= $f(\boldsymbol{\mu})$

Hence

$$f(\mathbf{Y}) - E[f(\mathbf{Y})] \approx \sum_{i=1}^{n} \frac{\partial f}{\partial y_i} \Big|_{\mathbf{y}=\mu} (Y_i - \mu_i)$$

We can now find the variance of $f(\mathbf{Y})$, $V[f(\mathbf{Y})] = E[(f(\mathbf{Y}) - E[f(\mathbf{Y})])^2]$.

Error propagation by Taylor expansion - Cont.

We can now find the variance of $f(\mathbf{X})$, $V[f(\mathbf{X})] = E[(f(\mathbf{X}) - E[f(\mathbf{X})])^2]$.

$$V[f(\mathbf{Y})] \approx E\left[\left(\sum_{i=1}^{n} \frac{\partial f}{\partial y_{i}}\Big|_{\mathbf{y}=\boldsymbol{\mu}} (Y_{i}-\boldsymbol{\mu}_{i})\right)^{2}\right]$$
$$= \sum_{i=1}^{n} \left(\frac{\partial f}{\partial y_{i}}\Big|_{\mathbf{y}=\boldsymbol{\mu}}\right)^{2} E\left[(Y_{i}-\boldsymbol{\mu}_{i})^{2}\right] + \sum_{i\neq j} \left(\frac{\partial f}{\partial y_{i}}\frac{\partial f}{\partial y_{j}}\right)\Big|_{\mathbf{y}=\boldsymbol{\mu}} E\left[(Y_{i}-\boldsymbol{\mu}_{i})(Y_{j}-\boldsymbol{\mu}_{j})\right]$$
$$= \sum_{i=1}^{n} \left(\frac{\partial f}{\partial y_{i}}\Big|_{\mathbf{y}=\boldsymbol{\mu}}\right)^{2} \sigma_{i}^{2} + 2\sum_{i=1}^{n-1} \sum_{j>i} \left(\frac{\partial f}{\partial y_{i}}\frac{\partial f}{\partial y_{j}}\right)\Big|_{\mathbf{y}=\boldsymbol{\mu}} \sigma_{ij}$$

Error propagation - Matrix formulation

Assume that $\boldsymbol{Y} \in \mathbb{R}^n$ is a random variable with

 $\mu = E[\mathbf{Y}]$ $\mathbf{\Sigma} = V[\mathbf{Y}],$

the mean and variance covariance of the function $f({m Y})\in {\mathbb R}^l$ is approximated by

$$E[f(\mathbf{Y})] \approx f(\boldsymbol{\mu})$$
$$V[f(\mathbf{Y})] \approx \boldsymbol{J}_f(\boldsymbol{\mu}) \boldsymbol{\Sigma} \boldsymbol{J}_f(\boldsymbol{\mu})^T,$$

where $J_f(\mu)$ is the Jacobian of f(y).

Example²

A simple predator-prey model is the Lotka-Volterra model

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y,$$

where x is the size of the prey population and y is size of the predator population. The equation allows for a constant of motion (i.e. the quantity will stay constant through time for given initial conditions) given by

$$K = y^{\alpha} e^{-\beta y} x^{\gamma} e^{-\delta x}.$$

Assume and that $E[X] = \mu_x$, $E[Y] = \mu_y$, $V[X] = \sigma_x^2$, $V[Y] = \sigma_y^2$, and $Cov(X, Y) = \sigma_{xy}$. Find the approximation of

- The mean, variance and standard deviation of K
- With $\alpha = 2/3, \beta = 4/3, \gamma = \delta = 1, \sigma_x^2 = 1/8^2, \sigma_y^2 = 1/16^2, \sigma_{xy} = 0$, and $\mu_y = 1/2$, sketch the mean and variance of K as a function of μ_x .

²Adapted from 2024 June

Non-linear function of random variables

The multivariate normal distribution

Functions of Normal random variables

Normal distribution as a sample distribution
The χ²-distribution

The multivariate normal distribution - first definition

A random variable $\boldsymbol{Y} \in \mathbb{R}^n$ with pdf given by

$$f_Y(\boldsymbol{y}) = \frac{1}{(2\pi)^{n/2}\sqrt{|\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})},$$

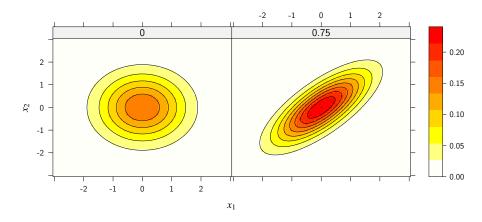
is said to follow a multivariate normal distribution, and we write $Y \sim N_n(\mu, \Sigma)$. The expected value and the variance-covariance is

$$E[\mathbf{Y}] = \boldsymbol{\mu}$$
$$V[\mathbf{Y}] = \boldsymbol{\Sigma}.$$

As usual we can write $\Sigma = \sigma R \sigma$, where σ is a diagonal matrix and R_{ij} is the correlation between Y_i and Y_j .

Example: Bivariate Normal distribution

Normal density for different values of the correlation.



Independece and correlation

Theorem (Independence of normal random variables)

If $oldsymbol{Y} = [oldsymbol{Y}_1^T, oldsymbol{Y}_2^T]^T \sim N(oldsymbol{\mu}, oldsymbol{\Sigma})$, and

$$Cov[\boldsymbol{Y}_1, \boldsymbol{Y}_2] = \boldsymbol{0},$$

then Y_1 and Y_2 are independent.

Hence in general zero correlation does not imply independence, but for the multivariate normal it does.

Normalization

Theorem (Normalization of normal random vectors)

If $Y \sim N(\mu, \Sigma)$, with the pdf of Y as defined in slide 13 (implying that Σ is positive definite), then

$$\boldsymbol{Z} = \boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{Y} - \boldsymbol{\mu}) \sim N(\boldsymbol{0}, \boldsymbol{I})$$

with $\Sigma^{\frac{1}{2}} = V\Lambda^{\frac{1}{2}}$ (implying that $\Sigma^{\frac{1}{2}}\Sigma^{\frac{T}{2}} = \Sigma$), where Λ is a diagonal matrix with the eigenvalues of Σ in the diagonal and V is the corresponding eigenvectors.

From linear algebra: A square matrix $A \in \mathbb{R}^{n \times n}$ with *n* linear independent eigenvectors can be factored as

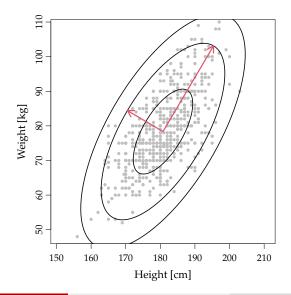
$$A = V \Lambda V^{-1}$$

where Λ is a diagonal matrix with eigenvalues along the diagonal, and V the collection of eigenvectors. If in addition A is symmetrix then also

$$A = V \Lambda V^T$$

i.e. $V^{T} = V^{-1}$.

Example: Distribution of height and weight



Multivariate normal: general definition

Definition (Multivariate normal distribution)

Let Z_i , i = 1, ..., n, be iid. standard normal random variables, s.t. $(\mathbf{Z} = [Z_1, ..., Z_n]^T)$

 $\boldsymbol{Z} \sim N(\boldsymbol{0}, \boldsymbol{I}).$

Then the random vector Y = AZ + b, with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, follow an *m*-dimensional multivariate normal distribution with

$$E[\mathbf{Y}] = \mathbf{b}$$
$$V[\mathbf{Y}] = \mathbf{A}\mathbf{A}^{T}$$

this holds also when AA^T is not positive definite.

Example

You put an item (with a known weight) onto to a scale and record the error made by the scale. The procedure is repeated two times and the mean and standard error of the scale is assumed to be 0 g, and 1 g respectively. The outcome are denoted Z_1 and Z_2 , Now define

$$r_i = Z_i - \bar{Z}_i$$

- what is the distribution of $r = [r_1, r_2]$?
- what is the distribution of $[r^T, \bar{Z}]$?

Non-linear function of random variables

The multivariate normal distribution

Sunctions of Normal random variables

- Normal distribution as a sample distribution
- The χ^2 -distribution

The framework of statistisk inferens

From eNote, Chapter 1:

- An *observational unit* is the single entity/level about which information is sought (e.g. a person) (**Observationsenhed**)
- The *statistical population* consists of all possible "measurements" on each *observational unit* (**Population**)
- The *sample* from a statistical population is the actual set of data collected. (**Stikprøve**)

Language and concepts:

- μ and σ are parameters that describe the populationen
- \bar{x} is an *estimate* of μ (an actual outcome, a number)
- \bar{X} and S^2 are *estimatorers* of μ and σ^2 (these are random variables)
- The concept '*statistic(s)*' is used for both

The aim

In lecture 1 we saw a number of summary statistics, we now assume that

$$Y_i \sim N(\mu, \sigma^2)$$
, and iid.

In this and the next lecture we will answer the following questions

- What is the distribution of \bar{Y} ?
- What is the distribution of S²?
- What is the distribution of $\frac{\bar{Y}-\mu}{S^2/\sqrt{n}}$?
- If we calculated observed variances from two different groups, what is then the distribution of $\frac{S_1^2}{S_2^2}$?

Why do we answer those questions?

In statistics we typically have a number of summary statistics (e.g. \bar{y} and s^2) from a sample.

- We want to make statements about the population parameters (e.g. μ and σ^2)
- In general this require distribution assumption about the population (e.g. the normal distribution)
- In order to quantify unceartainties we need distributions of the summary statistics.

Using the normal assumption we will study these distribututions in todays and the next lecture.

Example: Average and variance of normal sample

Assume that we plan a study with 5 independent observations. We also assume that the mean and variance in the population is $\mu = 10$ and $\sigma^2 = 2$, what is the distribution of the average (\bar{Y}) and the empirical variance S^2 under these assumptions?

Some general concepts

<u>Central Estimator</u>: An estimator, $\hat{\theta}$, is central (or non-biased), if and only if, the mean value of the estimator equals θ

Consistent Estimator

A central estimator, $\hat{\theta}$, that converge in probability is called a consistent estimator (you can think of this as $V(\theta_n) \to 0$).

Efficient Estimator

An estimator $\hat{\theta}_1$ is a more efficient estimator for θ than $\hat{\theta}_2$ if:

- () $\hat{ heta}_1$ and $\hat{ heta}_2$ both are central estimators of heta
- 2 The variance of $\hat{ heta}_1$ is less than the variance of $\hat{ heta}_2$

<u>Estimate</u>

When we have the actual sample and have calculated the summary statistic, we have an estimate (this is not a random variabele)

Example

If $Y_1,..,Y_n$ are iid. $N(\mu,\sigma^2)$ random variables, then

- $\overline{Y} = \hat{\mu}$ is a central estimator for μ $(E[\overline{Y}] = \mu)$.
- \overline{Y} is also a consistent estimator for μ $(V[\overline{Y}] = \frac{\sigma^2}{n} \to 0, n \to \infty)$.
- \bar{y} is an estimate of μ .
- The median is also a central and consistent estimator for μ , but the median is less efficient.

Distribution of the average

The (sampling) distribution for \bar{Y}

Assume that Y_1, \ldots, Y_n are independent and identically normally distributed random variables, $Y_i \sim N(\mu, \sigma^2), i = 1, \ldots, n$, then:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Find d such that

$$P(\bar{Y} - d\sigma < \mu < \bar{Y} + d\sigma) = 1 - \alpha$$

Example

Let $Y_1 \sim N(\mu, \sigma^2)$ and $Y_2 \sim N(\mu, \sigma^2)$ be independent random variables, what is the mean value of

$$Q = (Y_1 - \overline{Y})^2 + (Y_2 - \overline{Y})^2$$

Example: Expected value of variance estimator

Let Y_1, \ldots, Y_n be iid random variables with mean values $E[Y_i] = \mu$ and variance $V[Y_i] = \sigma^2$, and let Q be

$$Q = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

What is the expected value of Q?

Example: Expected value of variance estimator

Let Y_1, \ldots, Y_n be iid random variables with mean values $E[Y_i] = \mu$ and variance $V[Y_i] = \sigma^2$, and let Q be

$$Q = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

What is the expected value of Q?

$$E[Q] = \sum_{i=1}^{n} E[(Y_i - \overline{Y})^2]$$

= $\sum_{i=1}^{n} E[(Y_i - \mu + \mu - \overline{Y})^2]$
= $\sum_{i=1}^{n} E[(Y_i - \mu)^2 + (\mu - \overline{Y})^2 + 2(Y_i - \mu)(\mu - \overline{Y})]$

Example: Expected value of variance estimator

$$E[Q] = \sum_{i=1}^{n} E[(Y_i - \mu)^2] + E[(\mu - \overline{Y})^2] - 2Cov[Y_i, \overline{Y}]$$
$$= n\sigma^2 + \sigma^2 - 2\sum_{i=1}^{n} \frac{1}{n}Cov\left(Y_i, \sum_{j=1}^{n} Y_j\right)$$
$$= (n+1)\sigma^2 - 2\sum_{i=1}^{n} \frac{1}{n}Cov(Y_i, Y_i)$$
$$= (n+1)\sigma^2 - 2\sigma^2$$
$$= (n-1)\sigma^2$$

Hence $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$ is a central estimator for σ^2 .

Definition

If $Y_1, ..., Y_n$ is *iid* N(0,1) then

$$Q = \sum_{i=1}^{n} Y_i^2$$

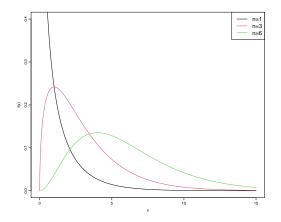
follow a χ^2 -distribution with *n*-degrees of freedom, we write $Q \sim \chi^2(n)$.

Theorem

The probability function of a χ^2 -distribution is given by

$$f(y) = \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} e^{-\frac{y}{2}}; \quad x \ge 0.$$

where $\Gamma(\cdot)$ is Gamma function and *n* is the degrees of freedom.



Properties of the χ^2 -distribution

If $Q \sim \chi^2(n)$ then

E(Q) = nV(Q) = 2n

If $Q_1 \sim \chi^2(n_1)$ and $Q_2 \sim \chi^2(n_2)$ are independent then

$$Q=Q_1+Q_2\sim\chi^2(n_1+n_2)$$

Example

If Y_1,\ldots,Y_{10} are iid $N(\mu,\sigma^2)$ and

$$Q = \frac{1}{\sigma^2} \sum_{i=1}^{10} (Y_i - \mu)^2$$

What is P(Q > 10) then?

Distribution of variance estimator

If Y_1,\ldots,Y_n are iid. $N(\mu,\sigma^2)$, with \overline{Y} , S^2 the average and empirical variance. Then

$$\frac{1}{\sigma^2}\sum_{i=1}^n (Y_i - \mu)^2 = \frac{(n-1)S^2}{\sigma^2} + \left(\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}\right)^2$$

and it follows that

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Proof (sketch)

1:
$$\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2 \sim \chi^2(n)$$
 and $\frac{(\bar{Y})}{\sigma}$

$$\frac{(\bar{Y}-\mu)^2}{\sigma^2/n} \sim \chi^2(1)$$

2:
$$\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2 = \frac{(n-1)S^2}{\sigma^2} + \frac{(\bar{Y} - \mu)^2}{\sigma^2/n}$$

3:
$$Cov(\bar{Y},\bar{Y}-Y_i)=0 \Rightarrow S^2$$
 and $(\bar{Y}-\mu)^2$ independent

4: If $Q_1 \sim \chi^2(n_1)$ and $Q_2 \sim \chi^2(n_2)$ independent, then $Q_1 + Q_2 \sim \chi^2(n_1 + n_2)$

Example

Find $E(S^2)$ and $V(S^2)$.

Example

Find $E(S^2)$ and $V(S^2)$. Answer:

$$E[S^{2}] = \frac{\sigma^{2}}{n-1} E\left[\frac{n-1}{\sigma^{2}}S^{2}\right]$$
$$V[S^{2}] = \left(\frac{\sigma^{2}}{n-1}\right)^{2} V\left[\frac{n-1}{\sigma^{2}}S^{2}\right]$$

Since $rac{n-1}{\sigma^2}S^2\sim\chi^2(n-1)$ it follows that

$$E[S^{2}] = \frac{\sigma^{2}}{n-1}(n-1) = \sigma^{2}$$
$$V[S^{2}] = \frac{\sigma^{4}}{(n-1)^{2}}2(n-1) = \frac{2\sigma^{4}}{n-1}$$

This imply that S^2 er en central and consistent estimator for σ^2 .

Example: Pooled variance

Let $Y_{1,1}, \ldots, Y_{1,n_1}$ og $Y_{2,1}, \ldots, Y_{2,n_2}$ be independent variables, with $Y_{1,i} \sim N(\mu_1, \sigma^2)$, and $Y_{2,i} \sim N(\mu_2, \sigma^2)$. With $a \in [0, 1]$ find a such that $V[S_p^2]$ is minimised with

$$S_P^2 = aS_1^2 + (1-a)S_2^2$$

where S_1^2 and S_2^2 is the sample variance for Y_1 and Y_2 . Find *a* and $V[S_P(a)^2]$.

The aim

In lecture 1 we saw a number of summary statistics, we now assume that

$$Y_i \sim N(\mu, \sigma^2)$$
, and iid.

In this and the next lecture we will answer the following questions

- What is the distribution of \bar{Y} ? DONE!
- What is the distribution of S²? DONE!
- What is the distrubution of $\frac{\bar{Y}-\mu}{S^2/\sqrt{n}}$? TBD
- If we calculated observed variances from two different groups, what is then the distribution of $\frac{S_1^2}{S_2^2}$? TBD

Summary of today

Non-linear function of random variables

The multivariate normal distribution

Sunctions of Normal random variables

- Normal distribution as a sample distribution
- The χ^2 -distribution