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Agenda

1 Matrix formulation of statistical models

2 The χ2-distribution and the multivariate normal

3 Projections and Cochrans theorem

4 The general linear model
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The Aim

Formulate simple statistical model in matrix notation

Establish the connection between the multivariate normal and the χ2-distribution

Establish and (partially) prove Cochrans theorem

Use Cochrans theorem to design test strategies

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 3 / 27



Matrix formulation of statistical models

Overview

1 Matrix formulation of statistical models

2 The χ2-distribution and the multivariate normal

3 Projections and Cochrans theorem

4 The general linear model
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Matrix formulation of statistical models

Example: Model

Assume that you plan take (small) sample with two observations Y1 and Y2 with Yi iid.
and N(µ,σ2)-distributed. The estimator for the mean is µ̂ = 1

2 (Y1 +Y2). Show that
the model can be written as

Y = 1µ +ε; ε ∼ N(0,σ2I).

Further show that inserting the estimators we can write the model as

Y = 1µ̂ +r =AY +(I−A)Y

with AY = 1µ̂.

We will be interested in the distribution related to AY and (I−A)Y .
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The χ2-distribution and the multivariate normal

Overview

1 Matrix formulation of statistical models

2 The χ2-distribution and the multivariate normal

3 Projections and Cochrans theorem

4 The general linear model
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The χ2-distribution and the multivariate normal

The χ2-distribution and the multivariate normal

Recall that if Zi ∼ N(0,1), i ∈ {1, ...,n} and iid. then

n

∑
i=1

Z2
i ∼ χ

2(n)

it follow directly that if Z ∼ Nn(0,I) then

ZTZ ∼ χ
2(n)

and further that (Corollary 9.18), if Y ∼ Nn(µ,Σ) then

(Y −µ)T Σ−1(Y −µ)∼ χ
2(n).

The result can be used to draw probability regions.
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The χ2-distribution and the multivariate normal

Example

Let [Y1,Y2]
T ∼ N(0,I), define Z = Y1 +Y2. For the random vector [Y1,Z] write down Σ

and draw a 95% probability region.
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The χ2-distribution and the multivariate normal

Probability regions Normal distribution
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The χ2-distribution and the multivariate normal

A test statistics

Assume that you plan take (small) sample with two observations Y1 and Y2 with Yi iid.
and N(µ,σ2)-distributed. The estimator for the mean is µ̂ = 1

2 (Y1 +Y2). The model
can be written as

Y = 1µ +ε; ε ∼ N(0,σ2I).

Assuming that µ = 0 what is the distribution of

F =
2Ȳ 2

rTr
.
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Projections and Cochrans theorem

Overview

1 Matrix formulation of statistical models

2 The χ2-distribution and the multivariate normal

3 Projections and Cochrans theorem

4 The general linear model

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 11 / 27



Projections and Cochrans theorem

Orthogoinal Projections

Definition (Orthogonal projections)

A matrix P is an orthogonal projection matrix if and only if

P is symmetric, i.e. P = P T

P is idempotent, i.e. P 2 = P .
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Projections and Cochrans theorem

Orthogonal Projections: Properties

Lemma (Properties of orthogonal projection matrices)

If P is an orthogonal projection matrix, then

1 The eigenvalues λi of P are either 0 or 1, and Rank(P ) = ∑i λi.

2 Rank(P ) = Trace(P ).

If P is a projection matrix then I−P is also a projection matrix.
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Projections and Cochrans theorem

Example: Model

Assume that you plan take (small) sample with two observations Y1 and Y2 with Yi iid.
and N(µ,σ2)-distributed. The estimator for the mean is µ̂ = 1

2 (Y1 +Y2). Show that
the model can be written as

Y = 1µ +ε; ε ∼ N(0,σ2I).

Further show that inserting the estimators we can write the model as

Y = 1µ̂ +r =AY +(I−A)Y

with AY = 1µ̂.

Refering to the example above show that A and I−A are both orthogonal
projection matrices.

In the example above find the Rank of A and I−A.
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Projections and Cochrans theorem

Cochrans theorem

Theorem (Cochran’s theorem)

Let Y ∼ Nn(0,σ
2I), and let Hi be orthogonal projection matrices such that

1
σ2Y

TY =
1

σ2

K

∑
i=1
Y THiY

i.e. ∑
K
i=1Hi = In, with Rank(Hi) = pi, and ∑i pi = n then

1 1
σ2Y

THiY ∼ χ2(pi)

2 Y THiY and Y TH jY are independent for i 6= j.
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The general linear model

Overview

1 Matrix formulation of statistical models

2 The χ2-distribution and the multivariate normal

3 Projections and Cochrans theorem

4 The general linear model
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The general linear model

The general linear model

The general linear model is a statistical model that can be written in the form

Y =Xβ+ε; ε∼ Nn(0,σ
2I)

or Y ∼ Nn(Xβ,σ
2I).

Y are the observations

X is the design matrix

β is a vector of parameters

ε are the residuals
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The general linear model

The general linear model: Some questions

How do we construct the design matrix X, and is it unique?

How do we estimate β?

What is the best estimate of the residual variance σ2?
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The general linear model

Example: The design matrix

Two items A and B are weighted on a balance, first separately then together, giving
the observations y1,y2,y3. Assume measurement erros are iid. normal.
Write the design matrix when the parameter interpretation is

β1 is the weight of item 1 and β2 is the weight of item 2.

β1 is the weight of item 1 and β2 is the difference in weight between item 1 and 2.

β1 is average weight of item 1 and 2, and β2 deviation between the average and
the individual weights.
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The general linear model

Least square estimator

For the general linear model

Y =Xβ+ε; ε∼ Nn(0,σ
2I)

we find the least square estimator by minimizing the residual sum of squares, i.e.

β̂ = argminβ RSS(β),

with

RSS(β) = rTr = (Y −Xβ)T (Y −Xβ).

The least square estimator is given by

β̂ = (XTX)−1XTY ,

and

V [β̂] = σ
2(XTX)−1.
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The general linear model

Example

In the items on a scale example find the optimal parameters for each choice of the
design matrix.
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The general linear model

Orthogonal parameters

Definition (Orthogonal parametrization)

A parametrization is called orthogonal if (XTX)i j = 0 for i 6= j.

An orthogonal parametrization imply the the covariance between parameters is zero.
Strong correlation between parameters is refered to as multicollinarity.

Which of the parametrizations in the items on a scale example are orthogonal?
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The general linear model

The general linear model as a projection

The fitted values in a general linear model can be ritten as

Ŷ =Xβ̂ =X(XTX)−1XTY =HY ,

and the observed residuals can be written as

r = Y − Ŷ = (I−H)Y ,

where

H is an orthogonal projection matrix

r and Ŷ are independent.

The dimension of the model is Trace(H) = Rank(X) = p

If two design matrices have the same projection matrix then the models are
equivalent.
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The general linear model

Example: Items on a scale, projections
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The general linear model

Example: Items on a scale, geometric interpretation
The example highlight the geometric interpretation of the projections, in the example
we have

Norm of the observations

||y||=
√

n

∑
i=1

y2
i =

√
yTy

Norm of fitted values

||ŷ||=
√

n

∑
i=1

ŷ2
i =

√
yTHy

Norm of residuals

||y− ŷ||=
√

n

∑
i=1

(yi− ŷi)2 =
√
yT (I−H)y

and further as ŷ and r = y− ŷ are orthogonal it follows (Pythagoras) that

||y||2 = ||ŷ||2 + ||y− ŷ||2
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The general linear model

Example: Items on a scale, test strategy

Using the items on a scale example, formulate a partioning of variation of the form

Y TY = Y TH0Y +Y T (H1−H0)Y +Y T (I−H1)Y

where H0 correspond to the assumption, that the two items have the same weight.
Under the assumption, what is the distribution of

Y T (H1−H0)Y

Y T (I−H1)Y
.

Assume you have observed y = [10,20,40], is that unusual under the assumption?
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The general linear model

Agenda

1 Matrix formulation of statistical models

2 The χ2-distribution and the multivariate normal

3 Projections and Cochrans theorem

4 The general linear model
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