02403 Introduction to Mathematical Statistics

Lecture 5: Cochrans theorem and the general linear model

DTU Compute Technical University of Denmark 2800 Kgs. Lyngby

- Matrix formulation of statistical models
- **2** The χ^2 -distribution and the multivariate normal
- Projections and Cochrans theorem
- The general linear model

- Formulate simple statistical model in matrix notation
- Establish the connection between the multivariate normal and the χ^2 -distribution
- Establish and (partially) prove Cochrans theorem
- Use Cochrans theorem to design test strategies

Overview

Matrix formulation of statistical models

② The χ^2 -distribution and the multivariate normal

Projections and Cochrans theorem

The general linear model

Example: Model

Assume that you plan take (small) sample with two observations Y_1 and Y_2 with Y_i iid. and $N(\mu, \sigma^2)$ -distributed. The estimator for the mean is $\hat{\mu} = \frac{1}{2}(Y_1 + Y_2)$. Show that the model can be written as

$$Y = 1\mu + \epsilon; \quad \epsilon \sim N(0, \sigma^2 I).$$

Further show that inserting the estimators we can write the model as

$$\boldsymbol{Y} = \boldsymbol{1} \hat{\boldsymbol{\mu}} + \boldsymbol{r} = \boldsymbol{A} \boldsymbol{Y} + (\boldsymbol{I} - \boldsymbol{A}) \boldsymbol{Y}$$

with $AY = 1\hat{\mu}$.

• We will be interested in the distribution related to AY and (I - A)Y.

Overview

Matrix formulation of statistical models

2 The χ^2 -distribution and the multivariate normal

Projections and Cochrans theorem

The general linear model

The χ^2 -distribution and the multivariate normal

Recall that if $Z_i \sim N(0,1)$, $i \in \{1,...,n\}$ and iid. then

$$\sum_{i=1}^n Z_i^2 \sim \chi^2(n)$$

it follow directly that if $\boldsymbol{Z} \sim N_n(\boldsymbol{0}, \boldsymbol{I})$ then

 $\boldsymbol{Z}^T \boldsymbol{Z} \sim \boldsymbol{\chi}^2(n)$

and further that (Corollary 9.18), if $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then

$$(\boldsymbol{Y}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{Y}-\boldsymbol{\mu}) \sim \chi^2(n).$$

The result can be used to draw probability regions.

Example

Let $[Y_1, Y_2]^T \sim N(\mathbf{0}, \mathbf{I})$, define $Z = Y_1 + Y_2$. For the random vector $[Y_1, Z]$ write down Σ and draw a 95% probability region.

Probability regions Normal distribution

A test statistics

Assume that you plan take (small) sample with two observations Y_1 and Y_2 with Y_i iid. and $N(\mu, \sigma^2)$ -distributed. The estimator for the mean is $\hat{\mu} = \frac{1}{2}(Y_1 + Y_2)$. The model can be written as

$$Y = 1\mu + \epsilon; \quad \epsilon \sim N(0, \sigma^2 I).$$

Assuming that $\mu = 0$ what is the distribution of

$$F = \frac{2\bar{Y}^2}{r^T r}$$

Overview

Matrix formulation of statistical models

2 The χ^2 -distribution and the multivariate normal

Projections and Cochrans theorem

The general linear model

Orthogoinal Projections

Definition (Orthogonal projections)

A matrix P is an orthogonal projection matrix if and only if

- P is symmetric, i.e. $P = P^T$
- P is idempotent, i.e. $P^2 = P$.

Orthogonal Projections: Properties

Lemma (Properties of orthogonal projection matrices)

If P is an orthogonal projection matrix, then

- **1** The eigenvalues λ_i of P are either 0 or 1, and $Rank(P) = \sum_i \lambda_i$.
- **2** $Rank(\mathbf{P}) = Trace(\mathbf{P}).$

If P is a projection matrix then I - P is also a projection matrix.

Example: Model

Assume that you plan take (small) sample with two observations Y_1 and Y_2 with Y_i iid. and $N(\mu, \sigma^2)$ -distributed. The estimator for the mean is $\hat{\mu} = \frac{1}{2}(Y_1 + Y_2)$. Show that the model can be written as

$$Y = \mathbf{1}\mu + \epsilon; \quad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \boldsymbol{I}).$$

Further show that inserting the estimators we can write the model as

$$\boldsymbol{Y} = \boldsymbol{1} \boldsymbol{\hat{\mu}} + \boldsymbol{r} = \boldsymbol{A} \boldsymbol{Y} + (\boldsymbol{I} - \boldsymbol{A}) \boldsymbol{Y}$$

with $AY = 1\hat{\mu}$.

- Referring to the example above show that A and I A are both orthogonal projection matrices.
- In the example above find the Rank of A and I A.

Cochrans theorem

Theorem (Cochran's theorem)

Let $\mathbf{Y} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$, and let \mathbf{H}_i be orthogonal projection matrices such that

$$\frac{1}{\sigma^2} \boldsymbol{Y}^T \boldsymbol{Y} = \frac{1}{\sigma^2} \sum_{i=1}^{K} \boldsymbol{Y}^T \boldsymbol{H}_i \boldsymbol{Y}$$

i.e.
$$\sum_{i=1}^{K} H_i = I_n$$
, with $Rank(H_i) = p_i$, and $\sum_i p_i = n$ then

2
$$Y^T H_i Y$$
 and $Y^T H_j Y$ are independent for $i \neq j$.

Overview

Matrix formulation of statistical models

2 The χ^2 -distribution and the multivariate normal

Projections and Cochrans theorem

The general linear model

The general linear model

The general linear model is a statistical model that can be written in the form

$$Y = X\beta + \epsilon; \quad \epsilon \sim N_n(\mathbf{0}, \sigma^2 I)$$

or $\boldsymbol{Y} \sim N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}).$

- Y are the observations
- X is the design matrix
- $oldsymbol{eta}$ is a vector of parameters
- ϵ are the residuals

The general linear model: Some questions

- How do we construct the design matrix X, and is it unique?
- How do we estimate β ?
- What is the best estimate of the residual variance σ^2 ?

Example: The design matrix

Two items A and B are weighted on a balance, first separately then together, giving the observations y_1, y_2, y_3 . Assume measurement erros are iid. normal. Write the design matrix when the parameter interpretation is

- β_1 is the weight of item 1 and β_2 is the weight of item 2.
- β_1 is the weight of item 1 and β_2 is the difference in weight between item 1 and 2.
- β_1 is average weight of item 1 and 2, and β_2 deviation between the average and the individual weights.

Least square estimator

For the general linear model

$$Y = X\beta + \epsilon; \quad \epsilon \sim N_n(\mathbf{0}, \sigma^2 I)$$

we find the least square estimator by minimizing the residual sum of squares, i.e.

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} RSS(\boldsymbol{\beta}),$$

with

$$RSS(\boldsymbol{\beta}) = \boldsymbol{r}^T \boldsymbol{r} = (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}).$$

The least square estimator is given by

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y},$$

and

$$V[\hat{\boldsymbol{\beta}}] = \boldsymbol{\sigma}^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$$

Example

In the items on a scale example find the optimal parameters for each choice of the design matrix.

Orthogonal parameters

Definition (Orthogonal parametrization)

A parametrization is called orthogonal if $(X^T X)_{ij} = 0$ for $i \neq j$.

An orthogonal parametrization imply the the covariance between parameters is zero. Strong correlation between parameters is refered to as multicollinarity.

• Which of the parametrizations in the items on a scale example are orthogonal?

The general linear model as a projection

The fitted values in a general linear model can be ritten as

$$\hat{\boldsymbol{Y}} = \boldsymbol{X} \hat{\boldsymbol{\beta}} = \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y} = \boldsymbol{H} \boldsymbol{Y},$$

and the observed residuals can be written as

$$\boldsymbol{r} = \boldsymbol{Y} - \boldsymbol{\hat{Y}} = (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y},$$

where

- H is an orthogonal projection matrix
- r and \hat{Y} are independent.
- The dimension of the model is Trace(H) = Rank(X) = p
- If two design matrices have the same projection matrix then the models are equivalent.

The general linear model

Example: Items on a scale, projections

(DTU Compute)

Example: Items on a scale, geometric interpretation

The example highlight the geometric interpretation of the projections, in the example we have

• Norm of the observations

$$||\boldsymbol{y}|| = \sqrt{\sum_{i=1}^{n} y_i^2} = \sqrt{\boldsymbol{y}^T \boldsymbol{y}}$$

• Norm of fitted values

$$||\hat{\boldsymbol{y}}|| = \sqrt{\sum_{i=1}^{n} \hat{y}_i^2} = \sqrt{\boldsymbol{y}^T \boldsymbol{H} \boldsymbol{y}}$$

Norm of residuals

$$||\boldsymbol{y} - \hat{\boldsymbol{y}}|| = \sqrt{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2} = \sqrt{\boldsymbol{y}^T (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{y}}$$

and further as \hat{y} and $r = y - \hat{y}$ are orthogonal it follows (Pythagoras) that $||y||^2 = ||\hat{y}||^2 + ||y - \hat{y}||^2$

Example: Items on a scale, test strategy

Using the items on a scale example, formulate a partioning of variation of the form

$$Y^{T}Y = Y^{T}H_{0}Y + Y^{T}(H_{1} - H_{0})Y + Y^{T}(I - H_{1})Y$$

where H_0 correspond to the assumption, that the two items have the same weight. Under the assumption, what is the distribution of

$$\frac{\boldsymbol{Y}^T(\boldsymbol{H}_1-\boldsymbol{H}_0)\boldsymbol{Y}}{\boldsymbol{Y}^T(\boldsymbol{I}-\boldsymbol{H}_1)\boldsymbol{Y}}.$$

Assume you have observed y = [10, 20, 40], is that unusual under the assumption?

Agenda

Matrix formulation of statistical models

- **2** The χ^2 -distribution and the multivariate normal
- Projections and Cochrans theorem
- The general linear model