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Linear regression models

A scatterplot

We have n pairs of data points (xi,yi).
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Linear regression models

A linear model

If the data points lie on a straight line, the relationship between x and y values can be
described by the equation:

yi = β0 +β1xi.
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We need a description of the random variation.
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Linear regression models

The simple linear regression model

The linear regression model:
Yi = β0 +β1xi + εi (i = 1, . . . ,n).

or

Y =

Y1
...

Yn

=

1 x1
...

...
1 xn

[β0
β1

]
+

ε1
...

εn

=Xβ+ε; ε∼ N(0,σ2I)

Yi is the dependent variable.

xi is the explanatory variable.

εi is the deviation (residual).

We assume εi ∼ N(0,σ2) (and i.i.d.).

Consider: What kind of distribution does Yi follow? Are the Yis identically
distributed?
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Linear regression models Least squares method

Least squares method

We want to estimate the parameters β0 and β1.

Good idea: Let’s minimize the variance of the residuals (σ2).

We minimize the sum of the squared residuals (Residual Sum of
Squares, RSS):

RSS(β0,β1) =
n

∑
i=1

(yi−β0−β1xi)
2 = (Y −Xβ)T (Y −Xβ).

That is, we choose β̂0 and β̂1 so that they minimize RSS.
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Linear regression models Least squares method

Illustration of model, data, and fit
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Linear regression models Least squares method

’Least squares’ estimators

Theorem 5.4 (for estimators)
’Least squares’ estimators for β0 and β1 are given by:

β̂1 =
∑

n
i=1(Yi− Ȳ )(xi− x̄)

Sxx
,

β̂0 =Ȳ − β̂1x̄,

where Sxx = ∑
n
i=1(xi− x̄)2.

or
β̂ = (XTX)−1XTY .
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Linear regression models Least squares method

’Least squares’ estimators – how?

RSS(β) =(Y −Xβ)T (Y −Xβ)
=Y TY −Y TXβ−βTXTY +βTXTXβ

=Y TY −2βTXTY +βTXTXβ

and

∇RSS(β) =−2XTY +XTXβ+XTXβ
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Linear regression models Least squares method

Example: Skive fjord

Formulate a model of log(chla) as a function of water
temperature.
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Statistics and linear regression

Variation in parameter estimates

There is variation in the parameters!
A new sample leads to new realizations of the estimators, i.e.,
new estimates.

What are the distributions of the parameter estimators?
We need to know them to create confidence intervals, etc.
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Statistics and linear regression

Standard errors for β̂0 and β̂1

The estimators β̂0 and β̂1 are normally distributed with variances:

Theorem 5.8 (first part)

V [β̂0] =
σ2

n
+

x̄2σ2

Sxx
,

V [β̂1] =
σ2

Sxx
,

Cov[β̂0, β̂1] =−
x̄σ2

Sxx
.

or
V [β̂] = σ

2(XTX)−1

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 14 / 40



Statistics and linear regression

Variance estimator

Theorem 5.8 (second part)
Since σ2 is unknown, we use the central estimate for σ2:

σ̂
2 =

RSS(β̂0, β̂1)

n−2
=

∑
n
i=1 e2

i
n−2

.

Why divide by n−2?

H =X(XTX)−1XT

Tr(I−H) = n−2 = n−Rank(X)

1
σ2 ∑

n
i=1 e2

i =
1

σ2Y
T (I−H)Y ∼ χ2(n−2)

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 15 / 40



Statistics and linear regression

Standard errors for β̂0 and β̂1

Thus, we estimate the variance (standard deviation) for the error and
thereby also the variances (standard deviations) of the estimators. We
denote these σ̂2

β0
and σ̂2

β1
.

We obtain the following estimates of the standard deviations (standard
errors) for β̂0 and β̂1 :

σ̂β0 = σ̂

√
1
n
+

x̄2

Sxx
, σ̂β1 = σ̂

√
1

Sxx
.

or

[σ̂β0 , σ̂β1 ] = σ̂

√
diag((XTX)−1)
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Statistics and linear regression Hypothesis tests and confidence intervals for β0 and β1

Hypothesis tests for β0 and β1

We can conduct hypothesis tests for the parameters in a linear regression
model:

H0,i : βi = β0,i,

H1,i : βi 6= β0,i.

Theorem 5.12
Under the null hypotheses (β0 = β0,0 and β1 = β0,1), the test statistics are

Tβ0 =
β̂0−β0,0

σ̂β0

, Tβ1 =
β̂1−β0,1

σ̂β1

,

t-distributed with n−2 degrees of freedom.
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Statistics and linear regression Hypothesis tests and confidence intervals for β0 and β1

Confidence intervals for β0 and β1

Method 5.15
(1−α) confidence intervals for β0 and β1 are given by:

β̂0± t1−α/2 σ̂β0 ,

β̂1± t1−α/2 σ̂β1 ,

where t1−α/2 is the (1−α/2) quantile of the t-distribution with n−2
degrees of freedom.

In Python, σ̂β0 and σ̂β1 can be found under "std err".
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Statistics and linear regression Hypothesis tests and confidence intervals for β0 and β1

Example: Skive Fjord

Go to Python and make a table that include parameters estimates,
standard errors, the t-test, and confidence interval.
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Statistics and linear regression Confidence interval

Method 5.18: Confidence interval for the regression line

A simple linear regression model can be written as

Yi ∼ N(µ(xi),σ
2),

where µ(xi) = β0 +β1xi.
For a new observation xnew, we can find a confidence interval for
µ(xnew) = β0 +β1xnew.
The (1−α) confidence interval for the regression line at x = xnew (for
µ(xnew)) can be found by:

(β̂0 + β̂1xnew)± tα/2(n−2) · σ̂

√
1
n
+

(xnew− x̄)2

Sxx
.
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Statistics and linear regression Prediction interval

Method 5.18: Prediction interval for a new observation

We want a prediction interval for a new observation Ynew at x = xnew.

The (1−α) prediction interval for a new observation Ynew at x = xnew
can be found by:

(β̂0 + β̂1xnew)± tα/2 · σ̂

√
1+

1
n
+

(xnew− x̄)2

Sxx
.

The prediction interval will contain the observed ynew in 100(1−α)%
of cases.

For fixed α , the prediction interval is larger than the confidence
interval.

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 21 / 40



Statistics and linear regression Prediction interval

Confidence and prediction interval for a new observation

Set xnew = [1, xnew]
T , then the confidence interval is

xT
newβ̂± t1−α/2σ̂

√
xT

new(X
TX)−1xnew

and the prediction interval is

xT
newβ̂± t1−α/2σ̂

√
1+xT

new(X
TX)−1xnew.
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Statistics and linear regression Prediction interval

Example: Skive Fjord

Go to Python and add confidence and prediction lines to the plot.
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Statistics and linear regression Correlation

Explained variance and correlation

The explained variance in a model is R2 (R-squared).

Calculated with

R2 = 1− ∑i(yi− ŷi)
2

∑i(yi− ȳ)2 ,

where ŷi = β̂0 + β̂1xi.

The proportion of the total variance explained by the model.
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Statistics and linear regression Correlation

Explained variance and correlation

The correlation ρ is a measure of linear relationship between two
stochastic variables.

The estimated (i.e., empirical) correlation satisfies

ρ̂ =
√

R2 sign(β̂1),

where sign(β̂1) is −1 for β̂1 ≤ 0 and 1 for β̂1 > 0

Thus:
Positive correlation with positive slope.
Negative correlation with negative slope.
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Statistics and linear regression Correlation

Test for significant correlation

Test for significant correlation (linear relationship) between two
variables:

H0 : ρ = 0,
H1 : ρ 6= 0,

is equivalent to

H0 : β1 = 0,
H1 : β1 6= 0,

where β1 is the slope in the simple linear regression model.
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Statistics and linear regression Correlation

Example: Skive Fjord

Go to Python and make the analysis using smf.ols.
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Multiple linear regression
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Multiple linear regression

Multiple linear regression

We can of course imagine more than one explanatory variable,
corresponding to the model

Yi = β0 +β1x1,i + · · ·+βpxp,i + εi , εi ∼ N(0,σ2) og i.i.d.

or

Y =

Y1
...

Yn

=

1 x11 · · · xp1
...

...
...

1 x1n · · · xpn


β0

...
βp

+
ε1
...

εn

 , εi ∼ N(0,σ2)

=Xβ+ε∼ N(0,σ2I),
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Multiple linear regression

Parameter estimetes

All results from the simple linear regression carry over (with minor
adjustment). The estimators of the parameters in the simple multiple
regression model are given by

β̂ = (XTX)−1XTY

and the covariance matrix of the estimates is

V [β̂] = σ
2(XTX)−1

and central estimate for the residual variance is

σ̂
2 =

RSS
n− (p+1)
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Multiple linear regression

Hypotese test (partial t-test)

The estimate of the parameters in the simple linear regression model are
given by

β̂ = (XTX)−1XTy

and the covariance matrix of the estimates is

Σ̂β = σ̂
2(XTX)−1

The obeserved t-statistic for the hypothesis: H0 : βi = βi,0 is

tobs,i =
β̂i−βi,0√
(Σ̂β )ii

.

Should be compared with a t-distribution with n− (p+1) degrees of
freedom.
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Multiple linear regression

Confidence and prediction intervals

xnew = [1,x1,new, . . . ,xp,new]
T :

Variance of the mean estimator

V (Ŷnew) =V (xT
newβ̂)

= σ
2xT

new(X
TX)−1xnew.

Prediction variance

V (Ynew) =V (xnewβ̂+ εnew)

= σ
2(1+xT

new(X
TX)−1xnew)

in practice replace σ2 with its estimate (σ̂2), and hence use quantiles of
the appropriate t-distribution.
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Multiple linear regression

Example: Skive Fjord

Go to Python expand the model with global radiation.
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Model selection

Model extension (forward selection)

Not included in the book

Start with a simple linear regression model with one significant
explanatory variable

Extend the model with other explanatory variables one at a time

Stop when there are no more significant extensions
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Model selection

Model reduction (backward selection)

Described in the book under section 6.5

Start with the full model

Remove the "least significant" variable

Stop when all remaining parameters are significant
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Model selection

Model selection

There is no certain method to find the best model!

Selecting a model requires subjective decisions.

Different procedures, either forward or backward selection
(or both), depend on the circumstances.

Statistical methods and tests exist to compare models.
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Model validation - Analysis of residuals
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Model validation - Analysis of residuals

Residual analysis

Method 5.28
Check the normality assumption with a QQ-plot.

Check for any systematic deviations by plotting the residuals (ei) as a
function of the fitted values (ŷi).

(Method 5.29)

Is the independence assumption reasonable?
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Model validation - Analysis of residuals
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