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Overview

Analysis of Variance - ANOVA

"ANalysis Of VAriance" (ANOVA) was introduced by R.A. Fisher about
100 years ago as a systematic way to analyze groups and has since been
fundamental to the development of statistics.

Today: A single classification criterion (one-way ANOVA)

Tomorrow: Two classification criteria (two-way ANOVA)

Classification criterion = factor

The first factor is typically called treatment, the second factor block
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F-distribution

F-distribution

If Q1 ∼ χ2(n1) and Q2 ∼ χ2(n2), and Q1 and Q2 independent then

F =
Q1/n1

Q2/n2
(1)

an F-distribution with n1 and n2 degrees of freedom.

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 5 / 36



F-distribution

The F-distribution as a sample distribution

Let Y1,1, . . . ,Y1,n1 be iid. N(µ1,σ
2) and let Y2,1, . . . ,Y2,n2 være i.i.d.

N(µ2,σ) then

F =
S2

1

S2
2
∼ F(n1−1,n2−1) (2)

where S2
1 and S2

2 are the sample variance for Y1 hhv. Y2.
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F-distribution

The pooled two-sample t-test statistic

Calculation of the pooled variance test statistics (Method 3.63 and 3.64)
When considering the null hypothesis about the difference between the
means of two independent samples:

δ = µ2−µ1

H0 : δ = δ0

the pooled two-sample t-test statistic is

tobs =
(ȳ1− ȳ2)−δ0√
s2

p/n1 + s2
p/n2

With s2
p =

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 .
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F-distribution

Pooled variance set up

Assume that Y1,i ∼ N(µ1,σ) and Y2, j ∼ N(µ2,σ). Then the pooled
two-sample statistic seen as a random variable (Theorem 3.54, Example
2.85 og Exercise 2.16):

T =
(Ȳ1− Ȳ2)−δ0√
S2

p/n1 +S2
p/n2

(3)

follows, under the null hypothesis and under the assumption that
σ2

1 = σ2
2 , a t-distribution with n1 +n2−2 degrees of freedom if the two

population distributions are normal.
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F-distribution

Pooled variance set up

Assume that Y1,i ∼ N(µ1,σ) and Y2, j ∼ N(µ2,σ).
We want to insestigate the hypothesis

H0 : µ1 = µ2

Then under the assumptions and the null hypothesis, the test statistics

Tobs =
Ȳ1− Ȳ2

Sp
√

1/n1 +1/n2

follow a t-distribution with n1 +n2−2 degrees of freedom.
And hence

T 2
obs =

(Ȳ1− Ȳ2)
2

S2
p (1/n1 +1/n2)

∼ F(1,n1 +n2−2).
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F-distribution

The aim of today

Assume that Yi, j ∼ N(µi,σ
2), and iid. with i ∈ {1, ...,k} and j ∈ {1, ...,ni}

We want to investigate the hypothesis

µ1 = µ2 = ...= µk

The general idea is to generalize the two-sample t-test, the result is

F =
1

k−1 ∑
k
i=1 ni(Ȳi− Ȳ )2

S2
p

∼ F(k−1,n− k)

where S2
p is the best estimator for the σ2.
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Introduction

One-Way Analysis of Variance - Example

Group A Group B Group C
2.8 5.5 5.8
3.6 6.3 8.3
3.4 6.1 6.9
2.3 5.7 6.1

Is there a difference (in mean) between groups A, B, and C?
Analysis of variance (ANOVA) can be used for the analysis,
provided the observations in each group can be assumed to
be normally distributed.
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Introduction

Example in Python

Go to today’s Python notebook in VS Code
"Example: Intro to ANOVA"
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Model and Hypotheses

One-Way Analysis of Variance - Model

The model can be written as

Yi j = µi + εi j, εi j ∼ N(0,σ2) and iid.

such that E[Yi j] = µi. The null-hypothesis is H0 : µi = µ j for all (i, j).
The model can also be formulated as

Y =Xβ+ε, ε∼ N(0,σ2I)

The design matrix X can be parametrized in different ways, a simple form
is

X1 =


1n1 0n1 . . . 0n1
0n2 1n2 . . . 0n2... . . . ...
0nK 0nK . . . 1nK

 ,
in this case βi = µi, and the null-hypothesis is βi = β j.
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Model and Hypotheses

Example

One way ANOVA (the model):
yi j = µi + εi j, εi j ∼ i.i.d. N(0,σ2), i = 1,2,3, j = 1,2.

An expanded view of this model is:
y11 = µ1 + ε11
y12 = µ1 + ε12
y21 = µ2 + ε21
y22 = µ2 + ε22
y31 = µ3 + ε31
y32 = µ3 + ε32

The exact same in matrix notation:
y11
y12
y21
y22
y31
y32


︸ ︷︷ ︸

y

=


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


︸ ︷︷ ︸

X

(
µ1
µ2
µ3

)
︸ ︷︷ ︸

β

+


ε11
ε12
ε21
ε22
ε31
ε32


︸ ︷︷ ︸

ε
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Model and Hypotheses

One-Way Analysis of Variance - Parametrization

While the previous parametrization is simple it is not so common and a
more common parametrization is

X2 =


1n1 0n1 . . . 0n1
1n2 1n2 . . . 0n2... . . . ...
1nK 0nK . . . 1nK

 ,
and the null hypothesis translate to

H0 : βi = 0 for i > 1.
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Model and Hypotheses

One-Way Analysis of Variance - Parametrization

Chapter 8 use the parametrization

Yi j = µ +αi + εi j ,

with the addition constraint ∑i niαi = 0, which correspond to the
parametrization

X3 =


1n1 1n1 . . . . . . 0n1
1n2 0n2 1n2 . . . 0n2...

... . . . ...
1nK−1 0nK−1 . . . 1nK−1
1nK − n1

nK
1nK . . . . . . −nK−1

nK
1nK

 ,
and the null hypothesis translate to

H0 : βi = 0 for i > 1.
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Model and Hypotheses

Null hypothesis

In all cases (parametrizations) the null-hypothesis correspond to the
design matrix

X0 = 1

and the partioning of variation is

Y TY = Y TH0Y +Y T (H−H0)Y +Y T (I−H)Y

with

Tr(H0) = 1, Tr(H) = k, Tr(I) = ∑
k
i=1 ni = n

and under the null-hypothesis

Fobs =
Y T (H−H0)Y /(k−1)
Y T (I−H)Y /(n− k)

∼ F(k−1,n− k).
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Model and Hypotheses

One-Way Analysis of Variance - Hypothesis Test

We will now compare (more than two) means (µ +αi) in
the model

Yi j = µ +αi + εi j, εi j
i.i.d.∼ N(0,σ2) .

The null hypothesis is given by:

H0 : αi = 0 for all i.

The alternative hypothesis is given by:

H1 : αi 6= 0 for at least one i.
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Computation: Variance Decomposition and ANOVA Table

One-Way ANOVA - Decomposition and ANOVA Table

With the model

Yi j = µ +αi + εi j, εi j
i.i.d.∼ N(0,σ2)

the total variation in data can be decomposed:

SST = SS(Tr)+SSE .

‘One-way’ implies that there is only one factor in the
experiment (with k levels).

The method is called analysis of variance because testing
is done by comparing variances.
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Computation: Variance Decomposition and ANOVA Table

Formulas for Sum of Squares

Total variation:

SST =
k

∑
i=1

ni

∑
j=1

(yi j− ȳ)2 = Y T (I−H0)Y

Variation within groups (Residual variation left after the model):

SSE =
k

∑
i=1

ni

∑
j=1

(yi j− ȳi)
2 = Y T (I−H)Y

Variation between groups (Variation explained by the model):

SS(Tr) =
k

∑
i=1

ni(ȳi− ȳ)2 = Y T (H−H0)Y
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Computation: Variance Decomposition and ANOVA Table

One-Way ANOVA - Parameter Estimates

Yi j = µ +αi + εi j, εi j
iid.∼ N(0,σ2)

µ̂ = ȳ

α̂i = ȳi− ȳ

σ̂2 = MSE = SSE
n−k

or

β̂ = (XT
3 X3)

−1XT
3 Y

with

β̂ = [µ̂, α̂1, ..., α̂k−1].

with α̂k =−∑
k−1
i=1

ni
nk

α̂i.
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Hypothesis Testing (F-test)

One-Way ANOVA - F-Test

We have (Theorem 8.2)
SST = SS(Tr)+SSE

From this, the test statistic can be derived:

F =
SS(Tr)/(k−1)

SSE/(n− k)
=

MS(Tr)
MSE

=
"between group variation"
"within group variation" ,

where
k is the number of groups,
n is the number of observations.

Choose a significance level α and compute the test statistic F .

Compare the test statistic with the (1−α) quantile in the F
distribution:

F ∼ F(k−1,n− k) (Theorem 8.6)
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Hypothesis Testing (F-test)

Analysis of variance table

Source of Deg. of Sums of Mean sum of Test- p-
variation freedom squares squares statistic F value
treatment k−1 SS(Tr) MS(Tr) = SS(Tr)

k−1 Fobs =
MS(Tr)

MSE P(F > Fobs)

Residual n− k SSE MSE = SSE
n−k

Total n−1 SST
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Variability and relation with the t-test for two samples

Variability and relation with the t-test for two samples
(Theorem 8.4)

The residual sum of squares, SSE, divided by n− k, also called residual
mean square, MSE = SSE/(n− k), is the average within-group variability:

MSE =
SSE
n− k

=
(n1−1)s2

1 + · · ·+(nk−1)s2
k

n− k
,

s2
i =

1
ni−1

ni

∑
i=1

(yi j− ȳi)
2.

ONLY when k = 2: (cf. Method 3.52)

MSE = s2
p =

(n1−1)s2
1 +(n2−1)s2

2
n−2

,

Fobs = t2
obs,

where tobs is the pooled t-test statistic from Methods 3.52 and 3.53.
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Post hoc comparisons
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Post hoc comparisons

Why is Post-hoc Comparison Necessary?

ANOVA tests the overall null hypothesis that all group means are
equal H0 : µ1 = µ2 = · · ·= µk.

If ANOVA shows a significant result (i.e., p− value < α), it only
indicates that at least one group mean differs, but it doesn’t specify
which groups are different from each other.

Post-hoc comparisons are performed to pinpoint which specific group
means are different.
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Post hoc comparisons

Post hoc confidence interval – Method 8.9

A single planned comparison of the difference between treatment i
and j is found by:

ȳi− ȳ j± t1−α/2

√
SSE
n− k

(
1
ni
+

1
n j

)
,

where t1−α/2 is from the t-distribution with n− k degrees of freedom.

Note the fewer degrees of freedom, since more parameters are
estimated in calculating MSE = SSE/(n− k) = s2

p (the pooled
variance estimate)

If all M = k(k−1)/2 combinations of pairwise confidence intervals
are calculated, use the formula M times, each time with
αBonferroni = α/M.
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Post hoc comparisons

Post hoc pairwise hypothesis test – Method 8.10

For a single planned hypothesis test

H0 : µi = µ j, H1 : µi 6= µ j, i 6= j

a t-test with n− k degrees of freedom can be used with test statistic

tobs =
ȳi− ȳ j√

SSE
n−k

(
1
ni
+ 1

n j

) .
If all M = k(k−1)/2 combinations of pairwise tests are done, then
the α level can be adjusted to control the type I error rate using the
Bonferroni approach:

αBonferroni =
α

M
.

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 33 / 36



Model

Overview

1 F-distribution
2 Introduction
3 Model and Hypotheses
4 Computation: Variance Decomposition and ANOVA Table

5 Hypothesis Testing (F-test)

6 Variability and relation with the t-test for two samples
7 Post hoc comparisons
8 Model

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 34 / 36



Model

Model validation

Our model:

Yi j = µ +αi + εi j, εi j
i.i.d.∼ N(0,σ2) .

Check the ususal assumptions

Identically distributed (check within group variation, e.g. box-plots).

Distribution (qq-plot of residuals (usually any kind go, but see
Lecture 9)).

If data is a time series, check serial correlation.
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