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Bootstrap

Motivation

So far we have assumed the normal distribution.
But many relevant statistics have complicated distributions. For
example:

The median
Quantiles in general
Any non-linear function of one or more (random) variables

For the mean, we have learned that CLT (Central Limit Theorem)
applies to large samples (but what if the sample is small and not
normally distributed?).

We lack tools when the assumptions for our tests are not met.

One solution: Simulation and bootstrapping.
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Bootstrap

Bootstrapping

Bootstrap = pulling oneself up by the bootstraps

There are two versions of bootstrapping:
1 Parametric bootstrap: simulate repeated samples from the assumed

(and estimated) distribution.
2 Non-parametric bootstrap: simulate repeated samples directly from

the data.
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Bootstrap Parametric bootstrap

Confidence interval for any sample statistic (incl. µ)

Method 4.7: Confidence interval for any θ by parametric bootstrap
Assume we have actual observations y1, . . . ,yn, and that they come from
some probability distribution f (pdf).

1 Simulate k×n observations from the assumed pdf (with µ = x̄). a

2 Calculate the estimate θ̂ for each of the k samples, θ̂ ∗1 , . . . , θ̂
∗
k .

3 Find the α/2- and (1−α/2)-quantiles in θ̂ ∗1 , . . . , θ̂
∗
k , so that we get

a (1−α)-confidence interval:
[
q∗

α/2, q∗1−α/2

]
aOther parameters in the distribution should also match the data as well as possible
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Bootstrap Parametric bootstrap

And the footnote...

"Other parameters in the distribution should also match the data as well
as possible"

For the normal distribution, choose µ and σ to match the sample’s x̄
and s.

Some distributions have more than one parameter

Generally, one should use the so-called maximum likelihood approach
to match the distribution to the sample data.
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Bootstrap Parametric bootstrap

Confidence interval for any sample statistic (comparison)
θ1−θ2 (incl. µ1−µ2) from two samples

Assume we have actual observations y1,1, . . . ,y1,n1 , and y2,1, . . . ,y2,n2 , that
these come from probability distributions f1 and f2. (The distributions are
assumed independent)

1 Simulate k groups of 2 samples with n1 and n2 observations,
respectively, from the assumed distributions, with means set to
µ̂1 = ȳ1 and µ̂2 = ȳ2.

2 Calculate the difference between the sample statistics in each of the
k samples: θ̂ ∗y11− θ̂ ∗y21, . . . , θ̂

∗
y1k− θ̂ ∗y2k.

3 Find the α/2- and (1−α/2)-quantiles in these, q∗
α/2 and q∗1−α/2, to

obtain a (1−α)-confidence interval:
[
q∗

α/2, q∗1−α/2

]
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Bootstrap Non-parametric bootstrapping

Non-parametric bootstrapping: An overview

We do not assume any distribution!
Two methods for confidence intervals are provided:

With one sample With two samples
Any sample statistic Method 4.15 Method 4.17
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Bootstrap Non-parametric bootstrapping

Confidence interval for any sample statistic θ (incl. µ) from
one sample

We do not assume any distribution! This imply that we use the data itself.

Method 4.15: Confidence interval for any sample statistic θ by
non-parametric bootstrapping
Assume we have observed y1, . . . ,yn.

1 Simulate k samples of size n by random sampling (with replacement)
from the observed data (re-sampling).

2 Calculate the estimate θ̂ for each of the k samples: θ̂ ∗1 , . . . , θ̂
∗
k .

3 Find the α/2- and (1−α/2)-quantiles of these to obtain a (1−α)

confidence interval:
[
q∗

α/2, q∗1−α/2

]
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Bootstrap Non-parametric bootstrapping

Confidence interval for θ1−θ2 (including µ1−µ2) by
non-parametric bootstrapping from two samples

Method 4.17: Confidence interval for θ1−θ2 by non-parametric
bootstrapping from two samples
Assume we have observations y1,1, . . . ,y1,n1 and y2,1, . . . ,y2,n2 .

1 Draw k pairs of bootstrap samples with n1 and n2 observations from
the respective samples (by random sampling with replacement).

2 Calculate the difference between the estimates in each of the k pairs
of bootstrap samples:
θ̂ ∗y11− θ̂ ∗y21, . . . , θ̂

∗
y1k− θ̂ ∗y2k.

3 Find the α/2- and (1−α/2)-quantiles of these, q∗
α/2 and q∗1−α/2, to

obtain a (1−α) confidence interval:
[
q∗

α/2, q∗1−α/2

]
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Bootstrap Non-parametric bootstrapping

Bootstrapping: An overview

We have seen 4 not so different method boxes
1 With or without distribution assumptions (parametric or

non-parametric)
2 Analyses with one or two samples (one or two groups)

Note:
Means are also included in random sample functions. That is, these
methods can also be applied for analyses beyond means!
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Inference for proportions
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Inference for proportions

Different analyses and data types

Means in quantitative data

Hypothesis test for a single mean based on one sample

Hypothesis test for two means based on two samples

Hypothesis test for multiple means based on several samples (coming
later).

Today: Proportions in qualitative data

Hypothesis test for a single proportion based on one sample.

Hypothesis test for two proportions based on two samples.

Hypothesis test for multiple proportions based on several samples.
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Inference for proportions Random variable for proportion

Estimation of proportions

We define the random variable P as the number of "successes" (Y )
out of a total (n):

P =
Y
n

From sample data with y "successes" (sample size n), we estimate
the proportion as:

p̂ =
y
n

Note:

P ∈ [0;1].

p is the "true" population probability of a "success".
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Inference for proportions Random variable for proportion

Binomial distribution

The number of "successes" (Y ) follows a binomial distribution
with the density function:

f (y;n, p) =
(

n
y

)
py(1− p)n−y

Mean and variance in the binomial distribution

E[Y ] = np
V[Y ] = np(1− p)
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Inference for proportions Random variable for proportion

Mean and variance for proportions

Mean and variance for the proportion P:

E[P] = E
[

Y
n

]
=

np
n

= p

V[P] = V
[

Y
n

]
=

1
n2 V[Y ] =

p(1− p)
n

Thus, we can define:

σP =

√
p(1− p)

n
Note:
σP is largest when p = 1/2.

For large n we approximately have

P∼ N(p,σ2
P)
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Inference for proportions Random variable for proportion

Confidence interval for a single proportion

Method 7.3
If the sample is large, then the (1−α)-confidence interval for p is given
by:

p̂± z1−α/2 σP

In practice, p̂ is substituted for p in the formula σP =
√

p(1− p)/n

How?
This follows from approximating the binomial distribution with the normal
distribution.

Rule of thumb
Assume X ∼ bin(n, p). The normal distribution is a good approximation
for the binomial distribution if np and n(1− p) (expected number of
successes and failures) are both at least 15.
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Inference for proportions Random variable for proportion

Margin of error (ME)

Margin of error
at a (1−α)-confidence level is:

ME = z1−α/2

√
p(1− p)

n
where we estimate p with p̂ = x

n .

Margin of error:

Corresponds to half the width of the (1−α)-confidence interval.

Describes the expected precision (minimum desired precision) of the
estimate p̂.
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Inference for proportions Random variable for proportion

Precision and sample size

Experiment planning:
How large does the sample size need to be to achieve a given
precision?

Method 7.13
If you want an expected (given) margin of error (ME) in a
(1−α)-confidence interval, the required sample size is:

n = p(1− p)
(z1−α/2

ME

)2
,

where p (worst case p = 1/2) is a reasonable guess.
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Inference for proportions Random variable for proportion

Example in Python

Go to today’s Python notebook in VS Code
"Example: Normal approximation of binomial distribution"
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Inference for proportions Hypothesis test for a single proportion

Steps in a hypothesis test – Overview

1 Formulate the null hypothesis and choose a significance
level α .

2 Calculate the observed test statistic.
3 Calculate the p-value from the observed test statistic and
the relevant distribution.

4 Compare the p-value with the significance level α and
conclude.

Alternatively: Compare the observed test statistic with
critical values and conclude.
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Inference for proportions Hypothesis test for a single proportion

Hypothesis test for a single proportion

We consider a null and alternative hypothesis for a single
proportion p and choose a significance level α :

H0 : p = p0,

H1 : p 6= p0.

As usual, reject H0 or accept H0.
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Inference for proportions Hypothesis test for a single proportion

Hypothesis test: Test statistic

Theorem 7.10 and Method 7.11
If the sample is large enough (np0 > 15 and n(1− p0)> 15),
we use the test statistic:

zobs =
y−np0√

np0(1− p0)
=

p̂− p0√
p0(1− p0)/n

Under the null hypothesis, the test statistic approximately
follows a standard normal distribution.

Find the p-value (evidence against the null hypothesis):

2P(Z > |zobs|)
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Inference for proportions Hypothesis test for a single proportion

Example in Python

Go to today’s Python notebook in VS Code
"Example: probability of rolling 6"
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Inference for proportions Confidence Interval and Hypothesis Test for Two Proportions

Confidence Interval for the Difference of Two Proportions

Method 7.15

(p̂1− p̂2)± z1−α/2 · σ̂p̂1−p̂2

where

σ̂ p̂1−p̂2 =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

Rule of Thumb
Both ni p̂i ≥ 10 and ni(1− p̂i)≥ 10 for i = 1,2.
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Inference for proportions Confidence Interval and Hypothesis Test for Two Proportions

Hypothesis Test for the Difference of Two Proportions -
Method 7.18

Hypothesis Test for Two Proportions
When comparing two proportions (shown here for a two-sided alternative
hypothesis):

H0 : p1 = p2,

H1 : p1 6= p2.

Use the test statistic

zobs =
p̂1− p̂2√

p̂(1− p̂)( 1
n1
+ 1

n2
)
, where p̂ =

y1 + y2

n1 +n2
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Inference for proportions Confidence Interval and Hypothesis Test for Two Proportions

Example 2

Is there a relationship between birth control pill use and the risk of heart
clots?
A study (USA, 1975) investigated the association between birth control
pill use and the risk of heart clots.

Heart Clot No Heart Clot
Pill Users 23 34

Non-Pill Users 35 132

Investigate whether there is an association between birth control pill use
and the risk of heart clots. Use a significance level of α = 5%.
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Inference for proportions Confidence Interval and Hypothesis Test for Two Proportions

Example 2 – Continued

In a study (USA, 1975), the association between birth control pill use and
the risk of heart clots was investigated.

Heart Clot No Heart Clot
Pill Users 23 34

Non-Pill Users 35 132

Estimates in each sample

p̂1 =
23
57

= 0.4035, p̂2 =
35

167
= 0.2096

Pooled Estimate:

p̂ =
23+35
57+167

=
58
224

= 0.2589
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Inference for proportions Confidence Interval and Hypothesis Test for Two Proportions

Example 2

Go to today’s Python notebook in VS Code
"Example: Contraceptive pills and risk of blood clots"
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Inference for proportions Hypothesis test for multiple proportions

Hypothesis test for multiple proportions

Comparison of c proportions
In some cases, you may be interested in assessing whether
two or more binomial distributions have the same parameter
p, i.e., testing the null hypothesis:

H0 : p1 = p2 = ...= pc = p

against the alternative hypothesis that these proportions are
not equal (i.e., at least one is different).

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 31 / 48



Inference for proportions Hypothesis test for multiple proportions

Hypothesis test for multiple proportions

Table of observed counts for c samples:
Sample 1 Sample 2 ... Sample c Total

Success y1 y2 ... yc y
Failure n1− y1 n2− y2 ... nc− yc n− y
Total n1 n2 ... nc n

Common (average) estimate:
Under the null hypothesis, the estimate for p is:

p̂ =
y
n
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Inference for proportions Hypothesis test for multiple proportions

Hypothesis test for multiple proportions

Common (average) estimate:
Under the null hypothesis, the estimate for p is:

p̂ =
y
n

”Use” this common estimate in each group:
If the null hypothesis is true, we expect the jth group to have
e1 j successes and e2 j failures, where

e1 j = n j · p̂ =
n j · y

n

e2 j = n j(1− p̂) =
n j · (n− y)

n
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Inference for proportions Hypothesis test for multiple proportions

Hypothesis test for multiple proportions

Table with the expected counts in the c samples:
ei j Sample 1 Sample 2 ... Sample c Total

Success e11 e12 ... e1c y
Failure e21 e22 ... e2c n− y
Total n1 n2 ... nc n

General formula for calculating expected values in
contingency tables:

ei j =
(Row total i) · (Column total j)

total
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Inference for proportions Hypothesis test for multiple proportions

Calculation of the test statistic - Method 7.20

The test statistic is

χ
2
obs =

2

∑
i=1

c

∑
j=1

(oi j− ei j)
2

ei j

where oi j is the observed count in cell (i, j) and ei j is the
expected count in cell (i, j).
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Inference for proportions Hypothesis test for multiple proportions

Find p-value or use critical value – Method 7.20

Sampling distribution of the test statistic (under H0):
χ2 distribution with (c−1) degrees of freedom (approximate)

Method with critical values:
If χ2

obs > χ2
1−α

(c−1), then reject the null hypothesis.

Rule of thumb for validity of the test:
All expected values ei j ≥ 5.
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Inference for proportions Hypothesis test for multiple proportions

Example 2 – continued

The observed values oi j

Observed Blood clot No blood clot
Pills 23 34

No pills 35 132
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Inference for proportions Hypothesis test for multiple proportions

Example 2 – continued

Use the “rule” for expected values four times, i.e.:

e22 =
167 ·166

224
= 123.76

The expected values ei j:
Expected Blood clot No blood clot Total

Pills 14.76 42.24 57
No pills 43.24 123.76 167
Total 58 166 224
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Inference for proportions Hypothesis test for multiple proportions

Example 2 – continued

Test statistic (include all cells):

χ
2
obs =

(23−14.76)2

14.76
+

(34−42.24)2

42.24
+

(35−43.24)2

43.24
+

(132−123.76)2

123.76

= 8.33

The critical value:
χ2

1−α
(c−1) for α = 0.05 and c = 2 (2 samples): 3.841

Conclusion:
Since χ2

obs = 8.33 > 3.841, reject the null hypothesis.
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Inference for proportions Hypothesis test for multiple proportions

Example 2

Go to today’s Python notebook in VS Code
"Example: Contraceptive pills with χ2"
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Inference for proportions Statistics for contingency tables

Example 3: Analysis of a contingency table

A 3×3 table: 3 samples with 3 categorical outcomes
4 weeks 2 weeks 1 week

Candidate I 79 91 93
Candidate II 84 66 60
Undecided 37 43 47

n1 = 200 n2 = 200 n3 = 200

Is the voting distribution the same?

H0 : pi1 = pi2 = pi3, i = 1,2,3.
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Inference for proportions Statistics for contingency tables

Another type of contingency table

A 3×3 table: 1 sample with two variables with 3 categorical
outcomes:

bad average good
bad 23 60 29

average 28 79 60
good 9 49 63

Is there independence between the classification criteria?

H0 : pi j = pi·p· j
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Inference for proportions Statistics for contingency tables

Test statistic – regardless of table type: Method 7.22

In a contingency table with r rows and c columns, the test statistic is:

χ
2
obs =

r

∑
i=1

c

∑
j=1

(oi j− ei j)
2

ei j

where oi j is the observed count in cell (i, j), and ei j is the expected count
in cell (i, j) (under the null hypothesis).

General formula for calculating expected values in contingency tables:

ei j =
(Row total i) · (Column total j)

total
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Inference for proportions Statistics for contingency tables

Find p-value or use the critical value - Method 7.22

Sampling distribution for the test statistic under H0:
χ2-distribution with (r−1)(c−1) degrees of freedom.

Method with the critical value:
If χ2

obs > χ2
1−α

with (r−1)(c−1) degrees of freedom, then reject the null
hypothesis.

Rule of thumb for validity of the test:
All expected values ei j ≥ 5.
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Inference for proportions Statistics for contingency tables

Example 3

Does the distribution change "significantly" over time?

Go to today’s Python notebook in VS Code
"Example: Candidate votes over time"
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Summary

Today: Proportions (Proportions)

When the outcome/interest variable yi is binary (yes/no, success/failure,
0/1)

Proportion in a group: p̂

Relevant null hypothesis is often p0 = 0.50 (not zero!)

Comparison of proportions in two or more groups

(Not included in this course: Proportion as a function of explanatory
variable, logistic regression)

When the outcome/interest variable yi is a category with > 2 groups

Discrete distribution between the groups (one proportion in each
group)

Comparison of distribution, e.g., over time or for different
"exposures".

Contingency tables: χ2-test
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