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Descriptive statistics

Statistics
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Descriptive statistics

Summary statistics (Nøgletal)

We use summary statistics to summarize and describe data (random variables)

Average: Measure of center / location

Median: Measure of center / location

Variance: Variation

Standard deviation: Variation (same unit as data)

Coefficient of variation: Variation in data (unit less)

Covariance: (linear) interdependence

Correlation: (linear) interdependence (unit less)

Quantiles: For making statements about the data distribution

Second order moment repesentation: Mean and variance-covariance
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Descriptive statistics

Graphical summaries: Plots
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Random variables
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Random variables

Random variable

Before the experiment is carried out, we have a random variable

Y (or Y1, . . . ,Yn)

indicated with capital letters.
Formally Y is a function that assign probabilities to subsets of possible outcomes, e.g.
if Y is the number rolled with a fair dice then P(Y = 1) = 1

6 and P(Y ∈ {1,2}) = 2
6 .

After the experiment is carried out, we have a realization or observation

y (or y1, . . . ,yn)

indicated with lowercase letters. y is a number (i.e. NOT a random variable), e.g. we
roll 2 with a fair dice.
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Random variables

Summary statistics (Empirical and model based)

Empirical Discrete random variable
Mean ȳ = ∑yi

1
n µ = ∑yi f (yi)

Variance s2 = ∑(yi− ȳ)2 1
n−1 σ2 = ∑(yi−µ)2 f (yi)

Median y(dn/2e)
1 “F−1(0.5)” 2

Quantile Qτ
1 “F−1(τ)”
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1see lect01 for precise definition
2More precisely: x s.t. P(Y ≤ y)≥ 0.5 and P(Y ≥ y)≥ 0.5
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Random variables

Discrete distributions used in this course

Distribution f(y) µ σ2 Typical application
Y ∼ B(n, p)

(n
y

)
py(1− p)n−y np np(1− p) Flip a coin n-times

(succes prob p).

Y ∼ H(n,a,N)
(a

y)(
N−a
n−y)

(N
n)

n a
N n a

N
(N−a)

N
N−n
N−1 Number of white balls drawn

from an urn with N balls and
a white balls.

Y ∼ P(λ ) λ y

y! e−λ λ λ Number of arivals per hour
when average number of
arivals per hour is λ .

There exist a number of other discrete distributions, fit for different porpuses.
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Random variables

Continuous distributions: overview

Distribution pdf µ σ2 Typical application

Y ∼U(α,β ) 1
β−α

α+β

2
(β−α)2

12 Constant density in the interval
(α,β ), zero outside.

Y ∼ Exp(λ ) λe−λx 1
λ

1
λ 2 Time between arrivals

when mean time equal λ .

Y ∼ N(µ,σ2) 1
σ
√

2π
e−

(x−µ)2

2σ2 µ σ2 Distribution of measurement
errors.

Y ∼ LN(α,β 2) 1
xβ
√

2π
e
− (ln(x)−α)2

2β2 eα+β 2/2 µ2(eβ 2 −1) Distribution of concentrations.
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Random variables

Rules for random variables (both discrete and continuous)
Let Y be a random variable, while a and b are constants, then

E[aY +b] =aE[Y ]+b

V[aY +b] =a2V[Y ]

Let Y1, . . . ,Yn be random variables, then

E

[
n

∑
i

aiYi

]
=

n

∑
i=1

aiE[Yi]

If Y1, . . . ,Yn are independent, then

V

[
n

∑
i=1

aiYi

]
=

n

∑
i=1

a2
i V[Yi]
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Random variables

Matrix calculation rules for random variable
Let Y1 and Y2 be random vectors with

V
[
Y1
Y2

]
=

[
Σ11 Σ12

Σ21 Σ22

]
,

then
Theorem

Let the variance-covariance matrix of [Y T
1 ,Y T

2 ]T be as above and let b be a vector,
and A and B be matrices of appropriate dimensions, then

E[AY1 +b] =AE[Y1]+b

Cov[AY1,BY2] =ACov[Y1,Y2]B
T =AΣ12BT

and as a special case

V [AY1] =Cov[AY1,AY1] =AΣ11AT .

Let A and B be such that AY1 +BY2 can be formed, then

V [AY1 +BY2] =AΣ11AT +BΣ22BT +AΣ12BT +BΣ21AT .
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Random variables

Error propagation

Assume that Yi are random variables with E(Yi) = µi og V (Yi) = σ2
i og Cov(Yi,Yj) = σi j

We need to find:
σ2

f (Y1,...,Yn)
= Var( f (Y1, . . . ,Yn))

(Generalization of) Method 4.3: for non-linear functions:

σ
2
f (Y1,...,Yn)

≈
n

∑
i=1

(
∂ f
∂yi

)2

σ
2
i +2∑

i
∑
j>i

∂ f
∂yi

∂ f
∂y j

σi j

Where the derivatives of f are evaluated at µ1, ...,µn.
Or the more general matrix formulation

E[ f (Y )]≈ f (µ)

V [ f (Y )]≈J f (µ)ΣJ f (µ)
T .

Simulation is also a possibility.
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The multivariate normal
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The multivariate normal

Bivariate Normal density

Normal density for different values of the correlation.
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The multivariate normal

Multivariate normal: general definition

Definition (Multivariate normal distribution)

Let Zi, i = 1, ...,n, be iid. standard normal random variables, s.t. (Z = [Z1, ...,Zn]
T )

Z ∼ N(0,I).

Then the random vector Y =AZ+b, with A ∈ Rm×n and b ∈ Rm, follow an
m-dimensional multivariate normal distribution with

E[Y ] =b

V [Y ] =AAT ,

this holds also when AAT is not positive definite.
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Sampling distributions
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Sampling distributions

Some general concepts

Central Estimator:
An estimator, θ̂ , is central (or non-biased), if and only if, the mean value of the
estimator equals θ

Consistent Estimator
A central estimator, θ̂ , that converge in probability is called a consistent estimator
(you can think of this as V (θn)→ 0).

Efficient Estimator
An estimator θ̂1 is a more efficient estimator for θ than θ̂2 if:

1 θ̂1 and θ̂2 both are central estimators of θ

2 The variance of θ̂1 is less than the variance of θ̂2

Estimate
When we have the actual sample and have calculated the summary statistic, we have
an estimate (this is not a random variabele)
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Sampling distributions

Sampling distributions

In lecture 1 we saw a number of summary statistics, we now assume that

Yi ∼ N(µ,σ2), and iid.

In this and the next lecture we will answer the following questions

What is the distribution of Ȳ? Ȳ ∼ N(µ,σ2/n)

What is the distribution of S2? (n−1)S2

σ2 ∼ χ2(n−1)

What is the distrubution of Ȳ−µ

S/
√

n?
Ȳ−µ

S/
√

n ∼ t(n−1)

If we calculated observed variances from two different groups, what is then the
distribution of S2

1
S2

2
? S2

1
S2

2
∼ F(n1−1,n2−1), if variance equal in the two groups.
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Sampling distributions

Confidence intervals for increasing sample size
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The general linear model
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The general linear model

The general linear model

The general linear model is a statistical model that can be written in the form

Y =Xβ+ε; ε∼ Nn(0,σ
2I)

or Y ∼ Nn(Xβ,σ
2I).

Y are the observations

X is the design matrix

β is a vector of parameters

ε are the residuals

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 23 / 56



The general linear model

The general linear model as a projection

The fitted values in a general linear model can be ritten as

Ŷ =Xβ̂ =X(XTX)−1XTY =HY ,

and the observed residuals can be written as

r = Y − Ŷ = (I−H)Y ,

where

H is an orthogonal projection matrix

r and Ŷ are independent.

The dimension of the model is Trace(H) = Rank(X) = p

If two design matrices have the same projection matrix then the models are
equivalent.

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 24 / 56



The general linear model

Cochrans theorem

Theorem (Cochran’s theorem)

Let Y ∼ Nn(0,σ
2I), and let Hi be orthogonal projection matrices such that

1
σ2Y

TY =
1

σ2

K

∑
i=1
Y THiY

i.e. ∑
K
i=1Hi = In, with Rank(Hi) = pi, and ∑i pi = n then

1 1
σ2Y

THiY ∼ χ2(pi)

2 Y THiY and Y TH jY are independent for i 6= j.
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The general linear model

Type I partioning of variation

Consider a series of nested hypothesis

H0 ⊂ H1 ⊂ ·· · ⊂ HM ⊂ Rn

corresponding to the design matrices

X0 =1

X1 =[1 X̃1]

...
Xi =[Xi−1 X̃i]

...
XM =[XM−1 X̃M],

and corresponding projection matrices Hi =Xi(X
T
i Xi)

−1XT
i .
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The general linear model

Example: Items on a scale, projections
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Confidence interval, and hypothesis test
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Confidence interval, and hypothesis test

Interval Estimation: Confidence Intervals

Consider the 1−α random interval I(Y ,α) for the variable θ (e.g. µ or σ2) such that

P(θ ∈ I(Y ,α)) = 1−α.

Notice that the interval (not θ) is random. The realization I(y,α) is referred to as
thhe confidence interval for θ .

Repeated sampling interpretation
If the experiment is repeated K times (K >> 1), then we expect that the true
parameter is included in (1−α)K intervals.

Notice that in practice we have one interval and make statements based on that one
interval! For n large formulas can be applied for even for no-normal data (CLT).
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Confidence interval, and hypothesis test

Confidence interval for the mean

I(y,α) = ȳ± t1−α/2
s√
n
= ȳ±ME

The Margin of Error is (for σ unknown)

ME = t1−α/2
s√
n

The margin of error (and hence the confidence interval width)

increase when α decrease towards zero

decrease with number of observations

vary from sample to sample (through s)

Further the location varies (through ȳ) from sample to sample.

Interpretation
The onfidence interval is NOT about single observations. It is about the location of
the true (unknown) mean value.
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Confidence interval, and hypothesis test

Method 3.19: Confidence intervals for variance and standard
deviation

Let Yi ∼ N(µ,σ2) for i = 1, . . . ,n be iid.

Variance:
A 100(1−α)% confidence interval for the variance σ2 is given by:[

(n−1)s2

χ2
1−α/2

;
(n−1)s2

χ2
α/2

]
,

where the quantiles come from a χ2 distribution with n−1 degrees of freedom.

Standard deviation:
A 100(1−α)% confidence interval for the standard deviation σ is:[√

(n−1)s2

χ2
1−α/2

;

√
(n−1)s2

χ2
α/2

]
.
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Confidence interval, and hypothesis test

Hypothesis test

A null hypothesis is rejected if the outcome (i.e. the data) is unusual under the null
hypothesis (and the assumptions).

Definition
An observation is unusual if the probability of the observation or something more
extreme is small (i.e. less than α). More extreme is understod in terms of distance to
the null hypethesis.a

aThis is the no-directional p-value and unidirectional tests also exist.

Example: Assume that Y ∼ N(0,1), we observe y = 3 in order to determine if y is
unusual we calculate

P(Y > |y|)+P(Y <−|y|) = 2(1−P(Y < |y|) = 2(1−F(y)) = 0.0027

which means that it is unusual if α is chosen as 0.05.
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Confidence interval, and hypothesis test

Power

Two possible truths against two possible conclusions:

Rejecting H0 Not rejecting H0
H0 is true Type I error (α) Correct acceptance of H0
H0 is false Correct rejection of H0 Type II error (β )
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Two sample t-test

Overview

1 Descriptive statistics
2 Random variables
3 The multivariate normal
4 Sampling distributions
5 The general linear model
6 Confidence interval, and hypothesis test
7 Two sample t-test
8 Multiple linear regression
9 One and Two-way ANOVA
10 Bootstrap and Inference for proportions
11 Some further perspectives

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 34 / 56



Two sample t-test

Pooled variance set up

Let Y1,1, ...,Y1,n1 be iid. with Y1,i ∼ N(µ1,σ
2) and Y2,1, ...,Y2,n2 be iid. with

Y2,i ∼ N(µ2,σ
2), test the hypothesis µ1−µ2 = δ0. We will consider the test statistics

T =
Ȳ1− Ȳ2−δ0

SȲ1−Ȳ2

In an informal way we can write this as

T =
observation-hypothesis

standard deviation under assumptions

We need to establish the distribution of T .
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Two sample t-test

Pooled variance, test statistics and confidence interval

Based on the distribution of T we find the test statistics

Test statistics and p-value

tobs =
(ȳ1− ȳ2)−δ0√
s2

p/n1 + s2
p/n2

; s2
p =

(n1−1)s2
1 +(n2−1)s2

2
n1 +n2−2

,

and
p− value = 2P(T > |tobs|) = 2(1−P(T < |tobs|); T ∼ t(n1 +n2−2)

(1−α)-confidence interval for δ

CI(α) = ȳ1− ȳ2± t1−α/2sp

√
1
n2

+
1
n2

where t1−α/2 is based on the t-distribution with n1 +n2−2 degrees of freedom.

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 36 / 56



Two sample t-test

Checking assumptions

Pooled variance
If the pooled variance two sample test is used then in addition the equal variance
assumption should also be checked (eg. box-plots or compare observed variances).
(see LM formulation for another way)

1 2

−
3

−
2

−
1

0
1

2

Residuals

group

r

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(DTU Compute) 02403 Introduction to Mathematical Statistics June 2025 37 / 56



Two sample t-test

Two sample t-test as an LM

The two sample t-test, assumening equal variance in the two groups, can be written as
an LM

Y =Xβ+ε; ε∼ N(0,σ2I).

where X ∈ R(n1+n2)×2, while the projection matrix (H =X(XTX)−1XT ) is unique
the design matrix X is not. Some parametrizations are

X1 =

[
1n1 0
0 1n2

]
; X2 =

[
1n1 0
1n2 1n2

]
; X3 =

[
1n1 − 1

21n1

1n2
1
21n2

]

Different parmarametrization result in different parameter interpretations, while
the fitted values are unaffected.
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Multiple linear regression
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Multiple linear regression

Multiple linear regression

We can of course imagine more than one explanatory variable, corresponding to the
model

Yi = β0 +β1x1,i + · · ·+βpxp,i + εi , εi ∼ N(0,σ2) og i.i.d.

or

Y =

Y1
...

Yn

=

1 x11 · · · xp1
...

...
...

1 x1n · · · xpn


β0

...
βp

+
ε1
...

εn

 , εi ∼ N(0,σ2)

=Xβ+ε∼ N(0,σ2I),
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Multiple linear regression

Parameter estimates

All results from the simple linear regression carry over (with minor adjustment). The
estimators of the parameters in the simple multiple regression model are given by

β̂ = (XTX)−1XTY

and the covariance matrix of the estimates is

V [β̂] = σ
2(XTX)−1

and central estimate for the residual variance is

σ̂
2 =

RSS
n− (p+1)
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Multiple linear regression

Residuals and model reduction

Further

Confidence intervals for parameters

Confidence and prediction intervals for the line

Standardized residuals and leverage

Multicollinarity

Polynomial regression
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One and Two-way ANOVA
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One and Two-way ANOVA

One-Way ANOVA - Decomposition and ANOVA Table

With the model

Yi j = µ +αi + εi j, εi j
i.i.d.∼ N(0,σ2)

the total variation in data can be decomposed:

SST = SS(Tr)+SSE .

‘One-way’ implies that there is only one factor in the
experiment (with k levels).

The method is called analysis of variance because testing
is done by comparing variances.
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One and Two-way ANOVA

Two-Way Analysis of Variance - Model

The model:
Yi j = µ +αi +β j + εi j,

where the errors are independent and identically distributed with

εi j ∼ N(0,σ2) .

µ is the overall mean
αi represents the effect of treatment i ∈ {1, ...,k}
β j represents the effect of block j ∈ {1, ..., l}
There are k treatments and l blocks

Note: In this course, we only have one observation in each cell (i.e., with the
same α and the same β ) when performing two-way ANOVA.
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One and Two-way ANOVA

ANOVA-table

Source of Deg. of Sums of Mean sum of Test- p-
variation freedom squares squares statistic F value
Treatment k−1 SS(Tr) MS(Tr) = SS(Tr)

k−1 FTr =
MS(Tr)

MSE P(F > FTr)

Block l−1 SS(Bl) MS(Bl) = SS(Bl)
l−1 FBl =

MS(Bl)
MSE P(F > FBl)

Residual (k−1)(l−1) SSE MSE = SSE
(k−1)(l−1)

Total n−1 SST
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One and Two-way ANOVA

Generalizations, its is all about X
We have studied the model

Y =Xβ+ε; ε∼ N(0,2 I).

The (very) general theory is given in Chapter 9, and specific examples

1 The columns of X given as zero and ones (t-test and ANOVA, Chapter 3 and 8)

2 The columns of X given as real numbers (regression, Chapter 5 and 6)

Further we assumed balanced design in the two-way ANOVA. The set up is fairly easily
generalized (meaning that all general formulas for the LM transfer directly), to

Non-balanced design, i.e. different number of observations in each group (e.g.
missing observations, or multiple observations in some cells).

Multiple (more than 2) factors.

Mix of regression and factor analysis (different slopes in different groups)

Interaction effects, i.e. “effect of factor A and B” 6= “effect of factor A + factor
B”.
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Bootstrap and Inference for proportions

Overview
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Bootstrap and Inference for proportions

Bootstrapping: An overview

We have seen 4 not so different method boxes

1 With or without distribution assumptions (parametric or non-parametric)

2 Analyses with one or two samples (one or two groups)

Note:
Means are also included in random sample functions. That is, these methods can also
be applied for analyses beyond means!
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Bootstrap and Inference for proportions

Inferences for Proportions

Specific methods, one, two and k > 2 samples
Binary/categorical response

Estimation and confidence interval of proportions
Large sample vs. small sample methods

Hypotheses for one proportion

Hypotheses for two proportions

Analysis of contingency tables (χ2-test) (All expected > 5)
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Some further perspectives
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Some further perspectives

Some further perspectives

Likelihood theory (estimations teknik)

General Linear Models (GLM) - generalisering af multiple linear regression og
variansanalyse

Generalized Linear Models - LM but non-Gaussian data

Correlations struktures

Stochastic dynamical systems

and much more....
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Some further perspectives

Some next level cources

02405 Probability

02417 Time Series Analysis

02418 Statistical modelling: Theory and practice

02411 Design of experiments

02413 Statistical Quality Control

02441 Applied Statistics and Statistical Software

And explore for cources that are not in this list....
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Some further perspectives

Some advanced cources

There will be a “Statistical modelling” specialization from next semester.

02426 Non-linear random effect models: time-independent and dynamic models

02427 Advanced Time Series Analysis

02407 Stochastic Processes - Probability 2

02807 Computational Tools for Data Science

02429 Analysis of correlated data: Mixed linear models

02582 Computational Data Analysis

02443 Stochastic Simulation

02586 Statistical genetics

02409 Multivariate Statistics

And explore for cources that are not in this list....
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Some further perspectives

Some advanced cources

And of course combined with machine learning, control and
other topics.
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